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No—hair theorems

No—hair “theorem” 1

beginning end
P AR ; p - Matter is either eaten by BH
Py or flies away to infinity

7& : : :
ﬁ.\‘/ Q \?’ = . . — proven for weak

N

=\ : : : perturbations around BH
s -~ — no general proof

"""""""""""""""""""""""""""""""""""" — but valid in known cases

...... beginning ~_end  (SESRTITE

Black hole with mass M, angular

:> momentum a and charge Q is
. . the most general stationary

solution in GR

— proved in
Black hole eating particles and a planet GR + electrodynamics

kind of obvious ...



No—hair theorems in a nutshell

Black holes have no hair

No—hair “theorem” 1 No—hair theorem 2
Black holes are the All black holes are identical
end-states of evolution! ... except for M, a, and Q@

T
People
black holes .




Charged black hole

a=0 Q#0 rQ
Charged BH = Reissner-Nordstrom BH

Interval:

ds? = —f(r) dt? +

dr?

f(r)

the same form!

2GM  GQ?
261 G
r r

+ r2dQ?

But: |f(r) =1

Not a vacuum solution: R, — %gﬂ,,R =8rGT,,
Electric potential: Ag = Q/r < creates T, # 0!
Horizon: f(r) =0 <+ not a singularity! (the same argument)
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+ GM?

quadraticeq. = ro=GM

second solution ri < rg — under horizon



Classical black holes = graveyards in the Universe

With time: .~ Black holes.

@ planets will fall onto stars \/\/\/\ f\

@ stars will fly away
or fall into central BHs

@ accelerated expansion L
_ ime
= outer space will be empty \
\

only BHs remain in the dark ...
Space

—>

S I/(C?t( /ah’#&

Classical black holes = perfect
matter & information storages

but they do not give it back ...




Black holes = thermal equilibria?

beginning end: V, T
o® M . '.
TN RO
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gas thermalizes in the box

Thermodynamics J

@ With time, complex systems
thermalize

@ Thermal equilibria
+> few macro-parameters

beginning end: M, a, Q
\(—o
o=
.\
X N O
=N

black hole eats particles

Black holes |

@ With time, systems
collapse into BHs

@ Black holes & M, a, @

similarity so far ...



Cannot live with classical gravity!

Schrédinger cat Schrédinger cat in GR

|dead; gdead> + ‘alivea galive>

= a state of grav. field exists

= sum of grav. states = grav. state
|dead) + |alive)

Emission of grav. wave

| \U,-n> evolution | wout>

= grav. wave consists of gravitons

= metric <> virtual gravitons

Gravity is the ordinary quantum theory!



Quantum black hole

black hole also black hole

black hole = bound state of gravitons

But we do not know how to quantize it!



Number of gravitons inside black hole

e Grav. waves: g, = 1 + hu
~—
wave

= GR egs: [ h,-;.rT = 0 <« linearized in h

= gravitons are massless: E;= w, = |pg|

@ Uncertainty principle:
1 1

E., ~ > =
¢~ Pe = =56M

@ = Number of gravitons inside BH:

M 2
Ng ~ Fgg GM? or |Ng < lr—g
pl

— A== 47rr,3 — area of horizon

— Iy = VG ~ 10733 cm — Planck length




Black holes are two—dimensional?

Ng ~ (rh/l1)? N~ (L/a)?
a
O
&
A
ad
/
Number of gravitons: N,  r? Number of aroms: N o 3
Number of states: Number of states:
— each graviton: ~ k states — each: ~ k states
— Ng gravitons: [ ~ kNe states — N atoms: [ ~ k" states
2
.
— Entropy: |Sg=InT ~ # ITh — Entropy: S L3
pl

There is nothing behind the horizon?



Bekenstein bound and quizzical holography

Practical problem: maximal hard-drive storage
e Maximal M, inside region R

@ Uncertainty:

E,~pyz Rl or E~ NyE, = %
@ Hoop conjecture:
R <2GE or collapse!
@ Put everything together:
R2 R2 2

R
=N, <"~ " and |S=InT<
e /,E/ an nN/,f/

Bekenstein bound

@ Cannot pack large entropy into R!
or it collapses
Black holes have the maximal entropy

| The entire world in two-dimensional! |




Statistics = ensembles of systems

Black holes resemble thermal states...

p1 P2 pr
V1) |W2) Vr)
Density matrix: many identical systems
e /= |W)(V| - one system: <A> = tr(ﬁf\) = <‘U’A’\U>

0 /=" pp [W,)(W,| - ensemble: (A)
n ~~~
probability

@ normalization: (1) =trp =1

tr(ﬁ AA) = Z pn<wn|AA|wn>

Thermal equilibrium: | = 771 H/T

— Boltzmann exponent

Normalization: Z = tre™"/T [ With time, systems arrive into

thermal equilibrium




Thermal instantons

Statistical sum: | 7 — . o—H/T

o Related to evolution operator: T~ = —its
Z =tre it
but with imaginary time t = —i 7
~—
] ) 71Euc|idean
o Euclidean time: 0 <7< T time
o Path integral:
Xo,T =0
/dxo/dx o9l
XO,T T-1
perlodlc cl. action
trajectories t— —iT

@ Saddle-point method: Sg > 1
main contributions x ~ x¢/(7) : Sg minimal !

instanton = class. solution!

@ Thermal instantons = periodic in 7 solutions

\/ (0

oscillator

.
.
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thermal gas

result



Thermal instantons in quantum gravity

Gibbons, Hawking '77
Consider quantum gravity at temperature T

@ We did not even quantize gravity!

@ Nevertheless: t = —iT, gNE,/ = gME,/(T, X)
z= [ dgf(r )| oo e
periodic
perio:jf 71 grav. action
1
® Sy = [ d*xF\/gE R+ boundary term
’ 167G

Thermal instanton = periodic in 7 solution

We already have stationary (= periodic) solution!

2
i + r?dQ?

. 2 _ 2
e A black hole: | ds* = +f(r)dm* + £

@ But now it is singular!

f(rn) = 0| < not covered by the horizon!



Black hole as a thermal instanton

Look C|ose|y! Gibbons, Hawking '77
X2
ds® = +f(r)dr* + a + r?dQ?
f(r)
@ Zoom into horizon: f ~ (r — rp)f] C\ x1
@ Introduce o AT
[r—TIh
p=2 7 and U= Eh T
@ Obtain ds? = p>di? + dp? +r2dQ?
—_——
flat plane! rh 4
o But AV = f”A f ;
u =
2T e

— Ay = 27r — plane

— AU # 27 — cone singularity ,
! 1| Hawking (BH) b T {
o TH = — = \
4 87rGM | temperature




Statistical sum for gravity

3
c’h
Th= ——— f
" 8rkgGM "

Quantum & relativistic thermodynamics for gravity r—
o Substitute the instanton: Z = e Selednl — o—4mCM’
@ Entropy: imagine that all states have the same energy!

7= e En/Tu — 58 . o=M/Tu
- ~ ~——
number of  BH mass
o Bekenstein entropy: states
M A
Sg=InZ + —=4rGM?>= )
Ty Al%)

First law of thermodynamics
TpdS =6Q = dM

Automatically satisfied!




First law for charged black hole

2GM  GQ? Q
f(ry=1-
(r) P
@ Horizon: ro = GM [1 +4/1— GQ,\;Q]
@ Temperature:
T _L,;_ 1 V1-Q?/GM?
= 4xr ~ 27GM 1+ 41— Q2/GM?]2
47rrg,
@ Entropy: 5S¢ =
4/,0/2
3 Extra term with
e First law: | Ty;dSg = dM — = dQ < | Ao(re) = Q/r
re work to bring dQ!
e Critical BH: M = QM,,

Ty =0, but Sg # 0!



Estimates

Entropy:

@ Entropy of matter in the entire Universe:

2000
Sy = == x Vol(30 Gpc) ~ 10%
cm

@ Black hole in the Milky Way:

Sg = 47G(4-10° M)% ~ 10%°
Black holes keep all the entropy!

Temperature:
o Black hole in the Milky Way, M ~ 4 -10° M.: Ty ~ 10714 K
o Astrophysical black holes, M ~ 3 My: Ty ~ 1078 K
e Moon-mass black hole, M ~4.1078 My: Ty ~ 2K
@ Asteroid-mass black hole, M ~ 10712 My Ty ~ 10* K
@ Smallest primordial black hole, M ~ 1014 g Ty~ 1012 K
@ Planckian black hole, M ~ Mp;: Ty ~ My,

Small (or not...)



Second law of black hole thermodynamics

Black hole area theorem Hawking '71

If GR equations are valid, then:
total area BH horizons grows in the process of evolution.

beginning end

Ap+ Ay < Apgw

Entropy grows < second law!




Black hole entropy from scattering

Bezrukov, DL, Sibiryakov '15
Collapse of a quantum spherical shell:

beginning black hole end
AT v

; = ‘ = ;
R M=E PRSI
E, R(t)

quantum shell

Calculate it semiclassically!

—7rE2/M§ Sg

Result: | P(contraction — expansion) ~ e =€

A probability of choosing 1 state out of [ ~ & states!



Black hole thermodynamics

law Ne

hot bodies

black holes

0

systems thermalize with time

equilibrium is characterized by
few parameters (gas: V u T)

energy conservation
0Q =TdS = dE + pdV

entropy cannot decrease

entropy is zero at zero
temperature

BHs eat surrounding matter

BHs: mass M, charge Q &
angular momentum a

THdSB =dM — Ao(l’Q)dQ

total area of all BH horizons
cannot decrease

?




Third law of black hole thermodynamics

Critical BH: M = QM,,;, Ty =0, Sg # 0
= Entropy is nonzero at zero temperature!

(N.B. Doubts in stability of critical BHs!)

still ...

. . A
Alternative (safe) formulation Qy ¢
Critical BH cannot be reached

in finite time M, Q

Particular calculations:
This holds both for black holes and for ordinary systems!



The story is not yet consistent!

o° :‘ -: TH

* .
. .

.
0o °° \"" e
--o L* -:. “.ae
R

thermal equilibrium?

@ No, this will happen:

beginning end
Lo i \ =
AN
N I
(9iv~ @
N
=*

All hot systems emit particles!
... and black holes do (next lecture)!



Summary

Black holes
e Unique solutions with few parameters (have no hair): M, Q, a
e Bound states of gravitons
@ Periodic in Euclidean time 7 with period T,;l
= have temperature Ty = (87GM)~! + Hawking temp.
@ Have entropy Sg = Ah/4/§, < Bekenstein entropy
= they are two-dimensional
— this is the maximal possible entropy (Bekenstein bound)
= the world is two-dimensional!
@ They shine! (next lecture)
Black hole thermodynamics
0. Black holes eat all surrounding matter & they are unique
|. Energy conservation
[I. Total area of black hole horizons cannot decrease with time
I1l. Critical black holes cannot be reached in finite time.

Thank you for attention!



