Cosmology and particle physics Lecture #3 Hot Big Bang and Dark Matter models

Institute for Nuclear Research of RAS, Moscow

Dmitry Gorbunov

Moscow International School of Physics

Dmitry Gorbunov (INR RAS)

Lecture #3, 5 March 2024

MISP 2024

1/35

Outline

Cosmological (particle) horizon $I_H(t)$

distance covered by photons emitted at t = 0

the size of causally-connected region — the size of the visible part of the Universe

in conformal coordinates: $ds^2 = 0 \longrightarrow |d\mathbf{x}| = d\eta$ coordinate size of the horizon equals $\eta(t) = \int d\eta$

$$I_{\mathcal{H}}(t) = a(t)\eta(t) = a(t) \int_0^t \frac{dt'}{a(t')}$$

dust

$$I_{H}(t) = 3t = \frac{2}{H(t)}$$
, $I_{H,0} = 2.6 \times 10^{28}$ cm $(h = 0.7)$

Dmitry Gorbunov (INR RAS)

Recombination: horizon

matter domination:

$$I_{\rm H,r} = 2H_r^{-1}$$

$$H_r^2 = rac{8\pi}{3} G
ho_{M}(t_r) = rac{8\pi}{3} G
ho_{M,0} \left(rac{a_0}{a_r}
ight)^3 = rac{8\pi}{3} G
ho_c \Omega_{M,0} (1+z_r)^3 \,.$$

at recombination:

today:

$$I_{\rm H,r}(t_0) = I_{\rm H,r} \times \frac{a_0}{a_r} = \frac{2}{H_0 \sqrt{\Omega_{\rm M}}} \frac{1}{\sqrt{1+z_r}}$$

 $h_{1,r} = -$

2

$$\frac{I_{H_0}}{I_{\mathrm{H},r}(t_0)} \sim \sqrt{1+z_r} \simeq 30$$

Examples of cosmological solutions

$$\begin{array}{ll} \text{radiation:} \qquad p = \frac{1}{3}\rho & \text{singular at } t = t_s \\ \rho = \frac{\text{const}}{a^4} \,, & a(t) = \text{const} \cdot (t - t_s)^{1/2} \,, & \rho(t) = \frac{\text{const}}{(t - t_s)^2} & \hline \\ t_s = 0 \,, & H(t) = \frac{\dot{a}}{a}(t) = \frac{1}{2t} \,, & \rho = \frac{3}{8\pi G} H^2 = \frac{3}{32\pi G} \frac{1}{t^2} \\ l_H(t) = a(t) \int_0^t \frac{dt'}{a(t')} = 2t = \frac{1}{H(t)} \,. \end{array}$$

$$\begin{array}{ll} \text{In case of thermal equilibrium} & T = \text{const}/a \\ \rho_b = \frac{\pi^2}{30} g_b T^4 \,, & \rho_f = \frac{7}{8} \frac{\pi^2}{30} g_f T^4 \\ \rho = \frac{\pi^2}{30} g_* T^4 \,, & g_* = \sum_b g_b + \frac{7}{8} \sum_f g_f = g_*(T) \end{array}$$

Dmitry Gorbunov (INR RAS)

h

$ds^2 = dt^2 - e^{2H_{dS}t} d\mathbf{x}^2$

no cosmological horizon: $I_{\rm H}(t) = e^{H_{dS}t} \int_{-\infty}^{t} dt' e^{-H_{dS}t'} = \infty$

de Sitter (events) horizon ($\mathbf{x} = 0, t$): from which distance I(t) one can detect light emitted at t?

in conformal coordinates: $ds^2 = 0 \longrightarrow |d\mathbf{x}| = d\eta$ coordinate size: $\eta(t \to \infty) - \eta(t) = \int_t^\infty \frac{dt'}{a(t')}$

physical size: $I_{dS} = a(t) \int_t^{\infty} \frac{dt'}{a(t')} = \frac{1}{H_{dS}}$

observer will never be informed what happens at distances larger than $I_{dS} = H_{dS}^{-1}$ Our future? with $H_{dS} = 0.8 \times H_0$

Recombination: $p + e \rightarrow H + \gamma$, $T_{rec} \approx 0.25 \text{ eV}$

Large Scale Structure

CMB anisotropy

Dmitry Gorbunov (INR RAS)

Lecture #3, 5 March 2024

MISP 2024

8/35

Small inhomogeneities in the expanding Universe

matter perturbations (perfect fluid approximation)

$$T^0_0 o
ho(t) + \delta
ho(\eta, \mathbf{x}), \quad T^0_i o \partial_i v(\eta, \mathbf{x}), \quad T^i_j o \delta
ho(\eta, \mathbf{x})$$

gravitational perturbations (scalar and tensor modes)

$$ds^2 = a^2(\eta) \left[(1 + 2\Phi(\eta, \mathbf{x})) d\eta^2 - (1 + 2\Psi(\eta, \mathbf{x})) d\mathbf{x}^2 - h_{ij}^{TT}(\eta, \mathbf{x}) dx^i dx^j \right]$$

Equations for linear perturbations, $\delta \rho / \rho \equiv \delta \ll 1$, $\Phi \ll 1$, etc

$$R_{\mu\nu} + \frac{1}{2} R g_{\mu\nu} = 8\pi G T_{\mu\nu} \rightarrow \dots$$
$$\nabla_{\mu} T^{\mu\nu} = 0 \rightarrow \dots$$

Subhorizon modes (k/a > H) at various stages

Dmitry Gorbunov (INR RAS)

Lecture #3, 5 March 2024

MISP 2024 1

10/35

On formulas...

• short waves, $k\eta_{eq} \gg 1$

 $R_B \equiv 3
ho_B/4
ho_\gamma$

$$\begin{split} \delta_{\gamma} = & \Phi_{(i)} \cdot \left[-324 \cdot (1+R_B) \, l^2(\Omega_M) \, \frac{\Omega_{CDM}}{\Omega_M} \, (1+z_{eq}) \, \frac{\log(0.2k\eta_{eq})}{(k\eta_0)^2} \right. \\ & \left. + \frac{6}{(1+R_B)^{1/4}} \cos\left(k \, \int_0^\eta \, d\tilde{\eta} \, u_s\right) \right] \, , \end{split}$$

• long waves, $k\eta_{rec} \ll 1$

$$\delta_{\gamma} = -rac{12}{5} \Phi_{(i)} = ext{const}$$

• intermediate waves ...

$$\delta_{\gamma}(\mathbf{k},\eta) = -4 \left[1 + R_{B}(\eta)\right] \Phi(\mathbf{k},\eta) + 4 \Phi_{(i)}(\mathbf{k}) \cdot A(k,\eta) \cos\left(k \int_{0}^{\eta} u_{s} d\tilde{\eta}\right),$$

On top of that: propagation in expanding Universe

Dmitry Gorbunov (INR RAS)

Lecture #3, 5 March 2024

ä

On formulas...

From linear approximation to the geodesic equation... for scalar perturbations

$$\begin{split} \frac{\delta T}{T} \left(\mathbf{n}, \eta_0 \right) = & \frac{1}{4} \delta_{\gamma}(\eta_r) + \left(\Phi(\eta_r) - \Phi(\eta_0) \right) \\ &+ \int_{\eta_r}^{\eta_0} \left(\Phi' - \Psi' \right) d\eta \\ &+ \mathbf{nv}(\eta_r) - \mathbf{nv}(\eta_0) \,. \end{split}$$

for tensor perturbations

$$\frac{\delta T}{T}(\mathbf{n},\eta_0) = \frac{1}{2} \int_{\eta_r}^{\eta_0} d\eta \, n_i h_{ij}^{TT'} n_j \,,$$

These inhomogeneities (matter perturbations)

originate from the initial matter density (scalar) perturbations

 $\delta\rho/\rho\sim\delta T/T\sim$ 10^-4, which are

adiabatic
$$\delta\left(\frac{n_{B}}{s}\right) = \delta\left(\frac{n_{DM}}{s}\right) = \delta\left(\frac{n_{L}}{s}\right)$$
Gaussian $\langle \frac{\delta\rho}{\rho}(\mathbf{k}) \frac{\delta\rho}{\rho}(\mathbf{k}') \rangle \propto \left(\frac{\delta\rho}{\rho}(\mathbf{k})\right)^{2} \times \delta(\mathbf{k} + \mathbf{k}')$
flat spectrum $\langle \left(\frac{\delta\rho}{\rho}(\mathbf{x})\right)^{2} \rangle = \int_{0}^{\infty} \frac{d\mathbf{k}}{\mathbf{k}} \mathscr{P}_{S}(\mathbf{k}) \qquad \mathscr{P}_{S}(\mathbf{k}) \approx \text{const}$
LSS and CMB $\mathscr{P}_{S} \equiv A_{S} \times \left(\frac{k}{k_{*}}\right)^{n_{s}-1} \qquad A_{S} \approx 2.5 \times 10^{-9}, \quad n_{S} \approx 0.97$

Dmitry Gorbunov (INR RAS)

Standard cosmological model $ds^2 = dt^2 - a^2(t)dx^2$

$$\left(\frac{\dot{a}}{a}\right)^{2} \equiv H^{2} = H_{0}^{2} \left[\Omega_{\Lambda} + (\Omega_{DM} + \Omega_{B} + \Omega_{\nu, m \neq 0}) \left(\frac{a_{0}}{a}\right)^{3} + (\Omega_{\gamma} + \Omega_{\nu, m = 0}) \left(\frac{a_{0}}{a}\right)^{4}\right]$$

- $\bullet \ \ T_{\gamma}\,{=}\,2.735\,K, \quad \Longrightarrow \quad \Omega_{\gamma}\,{\sim}\,10^{-5}$
- $N_v \approx 3$, $\Sigma m_v < 0.2 \, \mathrm{eV}$ \implies $\Omega_{v, \neq 0}$, $\Omega_{v, 0} \sim 10^{-5}$?
- $\Omega_B = 4.5\% \implies \eta_B \equiv n_B/n_\gamma = 6 \times 10^{-10}$
- $\Omega_{DM} = 27.5\%$
- $H_0 = 67 \, {\rm km/s/Mpc} \implies
 ho_0 = 5 \, {\rm GeV/m^3}$
- $\Omega_{\Lambda} = 68\% \implies$ flat space
- adiabatic, gaussian matter perturbations

$$\langle \left(\frac{\delta \rho}{\rho}\right)^2 \rangle \sim A_S \int \frac{dk}{k} \left(\frac{k}{k_*}\right)^{n_S - 1}$$

with $A_S = 3 \times 10^{-9}$ and $n_S = 0.97$

- no tensor perturbations, $r \equiv A_T / A_S < 0.05$
- reionization at $z \equiv a_0/a = 10$

Friedmann equation

$$(00): \quad \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G\rho - \frac{\varkappa}{a^2}$$

$$abla_{\mu}T^{\mu0} = 0 \longrightarrow \dot{\rho} + 3\frac{\dot{a}}{a}(\rho + \rho) = 0$$

the equation of state

 $p = p(\rho)$

many-component liquid, in case of thermal equilibrium

$$-3d(\ln a) = \frac{d\rho}{\rho + \rho} = d(\ln s)$$

entropy of cosmic primordial plasma is conserved in a comoving frame

 $sa^3 = const$

17/35

other equations

Dark Matter: many well-motivated candidates

• WIMPs	related to EW scale, SUSY					
 sterile neutrinos 	active neutrino oscillations					
 light scalar field 	string theory					
• axion	strong CP-problem					
• gravitino	local SUSY					
Heavy relics	GUTs					
(Topological) defects	GUTs					
Massive Astrophysical Compact Heavy Objects						
• Primordial black hole (remnants)	Phase transitions exotic inflation, reheating					
Multicomponent Dark Matter ?						
	γ, v, H, He					

Microscopic processes in the expanding Universe

A competition between scattering, decays, etc and expansion

for general processes one should solve kinetic equations

$$\frac{dn_{X_i}}{dt} + \frac{3Hn_{X_i}}{2} = \sum (production - destruction)$$

Boltzmann equation in a comoving volume: $\frac{d}{dt}(na^3) = a^3 \int \dots$

production:

desrtuction:

$$\sigma(A + X \rightarrow C + B)n_A n_X, \ \ \Gamma(X \rightarrow F + G)n_X \cdot M_X/E_X, \ \ ext{etc}$$

Fast direct and inverse processes, $\Gamma \gtrsim H$, are in equilibrium, $\Sigma(\) = 0$ and thermalize particles

Freeze-out of nonrelativistic Dark Matter

Assumptions:

- no $X \bar{X}$ asymmetry either $X = \bar{X}$ or $n_{X} = n_{\bar{X}}$
- **2** @ $T \lesssim M_X$ in thermal equilibrium with plasma

$$n_{\rm X}=n_{\rm \bar{X}}=g_{\rm X}\left(\frac{M_{\rm X}T}{2\pi}\right)^{3/2}{\rm e}^{-M_{\rm X}/T}$$

 $X\bar{X} \longrightarrow$ light particles

freeze-out temperature T_f $H \equiv T^2/M_{\rm Pl}^*, \quad M_{\rm Pl}^* = M_{\rm Pl}/1.66\sqrt{g_*}$

$$n_{\rm X} \langle \sigma_{\rm ann} v \rangle = H(T_f) \longrightarrow T_f = \frac{M_{\rm X}}{\ln\left(\frac{g_{\rm X} M_{\rm X} M_{\rm Pl}^* \sigma_0}{(2\pi)^{3/2}}\right)}$$

Bethe formula:

s-wave: $\sigma_{ann} = \frac{\sigma_0}{v}$

(e.g. neutrons)

Weakly Interacting Massive Particles

density after freeze-out:

$$n_{X}(T_{f}) = \frac{T_{f}^{2}}{M_{P}^{*}/\sigma_{0}}$$
present density:

$$n_{X}(T_{0}) = \left(\frac{a(T_{f})}{a(T_{0})}\right)^{3} n_{X}(T_{f}) = \left(\frac{s_{0}}{s(T_{f})}\right) n_{X}(T_{f}) \propto \frac{1}{T_{f}}$$

$$X + \bar{X} \text{ contribution to critical density:}$$

$$\Omega_{X} = 2 \frac{M_{X}n_{X}(T_{0})}{M_{X}} = 7.6 \frac{s_{0}\ln\left(\frac{g_{X}M_{P1}^{*}M_{X}\sigma_{0}}{(2\pi)^{3/2}}\right)}{M_{X}^{*}}$$

$$\Omega_{\rm X} = 2 \frac{M_{\rm X} n_{\rm X}(T_0)}{\rho_c} = 7.6 \frac{S_0 \ln \left(\frac{3N - |\mathbf{f}| - N - 0}{(2\pi)^{3/2}}\right)}{\rho_c \sigma_0 M_{\rm Pl} \sqrt{g_*(T_f)}}$$
$$= 0.1 \cdot \left(\frac{(10 \text{ TeV})^{-2}}{\sigma_0}\right) \frac{10}{\sqrt{g_*(T_f)}} \ln \left(\frac{g_{\rm X} M_{\rm Pl}^* M_{\rm X} \sigma_0}{(2\pi)^{3/2}}\right) \cdot \frac{1}{2h^2}$$

Dmitry Gorbunov (INR RAS)

N

WIMPs: discussion

$$\Omega_{\rm X} = 0.1 \cdot \left(\frac{(10 \text{ TeV})^{-2}}{\sigma_0} \right) \frac{10}{\sqrt{g_*(T_f)}} \ln \left(\frac{g_{\rm X} M_{\rm Pl}^* M_{\rm X} \sigma_0}{(2\pi)^{3/2}} \right) \cdot \frac{1}{2h^2}$$

- natural DM: subweak-scale cross section $\sigma_0 \sim 0.01 \times \sigma_W$ say, $M_X \sim 1$ TeV or X is not a weak gauge eigenstate
- naturaly "light" unitarity $\sigma_0 \lesssim \frac{4\pi}{M_{e}^2} \longrightarrow M_X \lesssim 100 \text{ TeV}$
- all stable particles with smaller σ_0 are forbidden !!
- WIMPs remain in kinetic equilibrium with plasma till $T \sim 10 \, \text{MeV}$

this is Cold Dark Matter, $v_{RD/MD} \ll 10^{-3}$

WIMPs may form dark halos (clumps) much lighter than dwarf galaxies

a hit

 $\propto n^2$

Weakly IMPs are mostly welcome (e.g. LSP in SUSY)

We can fully explore the model !!

• Direct searches for Galactic Dark Matter ($v \sim 10^{-3}$)

$$X +$$
nuclei $\rightarrow X +$ nuclei $+ \Delta E$

• Can search for WIMPs in cosmic rays: products of WIMPs annihilation (in Galactic center, dwarf galaxies, Sun)

$$X + \bar{X} \rightarrow p\bar{p}, e^+e^-, v, \gamma, \dots$$

Can search for WIMPs in collision experiments (LHC): missing

$$X + \bar{X} \leftrightarrow SM + SM' + \dots$$

Prospects in WIMP searches

5 March 2024

Lecture #3.

Testing neutrino floor with PandaX-4T

Dmitry Gorbunov (INR RAS)

Other by-product results: 2207.05036 the strongest limit on μ_V from LZ:

2207.04883

MISP 2024 25/35

Constraining the DM model parameter space

M.G. Aartsen at al (2016)

M

Present indirect limits on DM annihilation (clumps..)

Dmitry Gorbunov (INR RAS)

Lecture #3, 5 March 2024

Next generation: CTA

2108.09078

Dmitry Gorbunov (INR RAS)

Lecture #3, 5 March 2024

Ursa Major III

2311.14611

Ursa Major III

2311.14611

LHC limits for annihilation

1502.01518

If thermal CDM but not Weakly IMPs?

We still can study the model if DM annihilates (partly) into SM particles

• But DM particle X can be light and feebly coupled (t-channel)

$$\sigma_0 \sim rac{\xi^4}{M_X^2}$$

- ξ is not a gauge coupling within GUT !
- With small σ_0 one needs entropy production
- σ_0 may be increased by *s*-channel resonance, $M_Y \approx 2M_X$
- annihilation can be amplified by co-annihilation channels, $X + A \rightarrow SM$
- With light messengers between Dark and Visible sectors many estimates change, say $\sigma_0 = \sigma_0(\nu)$
- DM interaction at freeze-out and now are not the same say, Sommerfield enhancement of the annihilation of slow particles $v \sim 10^{-3}$

Outime	0	u	tl	i	n	e
--------	---	---	----	---	---	---

AN NA

Dark Matter: non-thermal production

- in the primordial plasma of SM particles (via scatterings (freeze-in), gravitino via oscillations): sterile neutrino of 1-50 keV 2 at phase transitions: axion of $10^{-4} - 10^{-7} \, \text{eV}$ Q-balls strangelets (?) during reheating (after inflation?): black holes any guy coupled (only) to inflaton perturbatively: inflaton decays production by external (inflaton) field non-perturbatively: Bose-enhancement of coherent production by external field
 - while the Universe expands:

gravity produces any particles at $H \sim M_X$

A simple example of scalar DM

most general renormalizable coupled to SM:

 Z_2 -invariant Higgs (Φ) portal

$$\Delta \mathscr{L} = \frac{1}{2} g^{\mu\nu} \partial_{\mu} X \partial_{\nu} X - \frac{1}{2} M^2 X^2 + \frac{g^2}{2} X^2 \Phi^{\dagger} \Phi - \frac{\lambda}{4} X^4$$

Options:

• freeze-out:

sufficiently large g^2

$$v\sigma_{hh \to XX} \times n_h \gtrsim H \to \Omega_X \propto \frac{1}{\sigma_0}, \text{ with } \frac{g^4}{(4\pi...)^2 M^2} = \sigma_0 \equiv \sigma v$$

• freeze-in:

intermediate g^2

$$\dot{n}_X + 3Hn_X = \sigma_{hh \to XX} n_h^2 \rightarrow \frac{n_X}{s} = \# \int dT \frac{n_h^2}{sHT} \times \frac{g^4}{T^2} \sim g^4 \frac{M_{Pl}}{M} \rightarrow$$

$$\Omega_X \propto g^4 \rightarrow g^2 \approx 10^{-11}$$

still natural...

Freeze in via gravitational scatterings..?

any particles A in plasma

$$\sigma_{AA \to XX} \propto \frac{T^2}{M_{Pl}^4} \rightarrow \Omega_X \propto M_X \frac{T_i^3}{M_{Pl}^3} \dots$$

assuming $m \ll T_i$

called "unnatural" being dependent on the initial conditions