Modern Trends in Mathematical Physics. III

 (for pedestrians ... cyclists and drivers)Andrei Marshakov
Center for Advanced Studies, Skoltech

Moscow International School of Physics 2022
JINR, Dubna, July 2022

Complex curves

Riemann surface $(g=3) \Sigma$:

Smooth Riemann surface (of genus 3) with marked A - and B-cycles.

Lattice of charges $\Leftrightarrow H_{1}(\Sigma)$ with symplectic $\langle\rangle,,\left\langle A_{i}, B_{j}\right\rangle=\delta_{i j}$.
Period matrix: $\operatorname{Im} T_{i j} \geq 0, T \underset{\text { degeneration }}{\rightarrow} \log a$

Period matrices

Computation of elliptic integrals $\oint \lambda \frac{d w}{w}$ or $\oint \frac{d w}{w \lambda}$ on $\Sigma: w+\frac{\Lambda^{4}}{w}=\lambda^{2}-U$
At $\Lambda \rightarrow 0$, for $U=a^{2}$

$$
\begin{equation*}
w=\lambda^{2}-a^{2} \tag{1}
\end{equation*}
$$

so that

$$
\oint \lambda \frac{d w}{w}=\oint \lambda d \log \left(\lambda^{2}-a^{2}\right) \sim\left\{\begin{array}{c}
a \\
a \log a-a
\end{array}\right.
$$

The period "matrix" $\tau \sim \frac{\partial}{\partial a}(a \log a-a)=\log a$, or

$$
\begin{equation*}
\tau \sim \int_{-a}^{a} d \log \left(\lambda^{2}-a^{2}\right) \sim \log a \tag{2}
\end{equation*}
$$

- To be identified with complexified gauge coupling $\tau \sim \frac{\vartheta}{2 \pi}+i \frac{4 \pi^{2}}{g^{2}}$;
- Any parallels with QFT?

Supersymmetric gauge theory

$$
\left[\varphi, \varphi^{+}\right]=0
$$

4d $\mathcal{N}=2$ supersymmetric Yang-Mills theory:

$$
\begin{equation*}
\mathcal{L}_{0}=\frac{1}{g_{0}^{2}} \operatorname{Tr}\left(\mathrm{~F}_{\mu \nu}^{2}+\left|D_{\mu} \Phi\right|^{2}+\left[\Phi, \Phi^{\dagger}\right]^{2}+\text { fermions }\right)+\frac{\vartheta_{0}}{2 \pi} \operatorname{Tr} F \wedge F \tag{3}
\end{equation*}
$$

- Higgs condensate $\langle\Phi\rangle$ breaks gauge group to Abelian;
- Effective $U(1)^{\mathrm{rank} G}$ Abelian theory in IR;
- Moduli space of the Coulomb branch: $u \sim\left\langle\operatorname{Tr} \Phi^{2}\right\rangle$, generally

$$
\begin{equation*}
P(\lambda ; \overrightarrow{\vec{u}})=\langle\operatorname{det}(\lambda-\Phi)\rangle \tag{4}
\end{equation*}
$$

- 'Light' u-dependent BPS-spectrum ...

Supersymmetry and loop corrections

- Gauge coupling $\frac{1}{g^{2}} \sim \beta \log \frac{\sqrt{|u|}}{\Lambda}$: exact 1-loop RG formula;
- $\beta=2 N-N_{f} \geq 0 \ldots$ UV completion (?!);

- Complexification: $i \frac{4 \pi^{2}}{g^{2}}+\frac{\vartheta}{2 \pi}=\tau \sim \log \frac{\sqrt{u}}{\Lambda}$;
- Works at $u \gg \Lambda^{2}$,

SW theory: strong coupling

Obstruction: at $|u|<\Lambda^{2}$ e.g. one gets $\frac{1}{g^{2}} \sim \log \frac{\sqrt{|u|}}{\Lambda}<0$

- Perturbative contributions do not saturate results at strong-coupling;
- Smth else: e.g. instanton contributions ...

Instead $\ldots \frac{1}{g^{2}} \sim \operatorname{Im} \tau(\geq 0)$ solves the problem ... together with exact formulas for the period integrals

$$
\gamma \in H_{1}(\Sigma) \mapsto a_{\gamma}(u)=\oint_{\gamma} \lambda \frac{d w}{w}
$$

Already checked that at weak coupling: $a(u) \sim \sqrt{u}$ and $a_{D}(u) \sim \sqrt{u} \log u \sim \frac{a}{g^{2}} \ldots$

SW theory: strong coupling

Classically at $u=0$ non-Abelian symmetry restores, but quasi-classical analysis works only at $u \gg \Lambda^{2} \ldots$

Quantum moduli space for $G=S U(2)$

- non-Abelian symmetry never restores;
- Instead at $a_{D}=0$ and $a+a_{D}=0 \Sigma$ degenerates: EM-dual Abelian theory;
- Effective couplings in $\mathcal{N}=2$ special Kähler geometry: holomorphic prepotential $T_{i j}=\frac{\partial^{2} \mathcal{F}}{\partial a_{i} \partial_{j}}\left(\right.$ action $\left.\operatorname{Im} \int d^{4} \theta \mathcal{F}(\Phi)\right)$.

Arguments

- Consistency!
- Supported by instanton computations, though:
- Long story, many attemps through 90-s;
- Example with finite perturbative renormalization in $S U(2) N_{f}=4$ theory;
- Success with deformation: IR regularization consistent with SUSY, $\Omega\left(\varepsilon_{1}, \varepsilon_{2}\right)$-background ...
- New formulas valid for:
- 2d conformal field theory;
- Solutions of Painlevé equations (isomonodromic deformations).
- Continues beyond validity range of standard QFT methods ...
- 2d CFT and ... differential equations ...

Prepotential expansions

Weak coupling:
$\tau=\frac{\partial^{2} \mathcal{F}}{\partial a^{2}} \quad \mathcal{F}(a) \underset{a \rightarrow \infty}{\rightarrow} \frac{1}{2} a^{2} \log \frac{a}{\Lambda}+a^{2} \sum_{k>0} f_{k}\left(\frac{\Lambda}{a}\right)^{4 k}$

- Logarithm from $\mathcal{N}=2$ one loop;
- Expansion over instantons of charge k, in powers of $\Lambda^{\beta}=\Lambda^{2 N}=\Lambda^{4}$: a way to compute $\left\{f_{k}\right\}$ - instanton calculus ...

Strong coupling (monopole point $a_{D} \rightarrow 0$), for $\mathcal{F}_{D}=a a_{D}-\mathcal{F}$

$$
\mathcal{F}_{D}\left(a_{D}\right) \underset{a_{D} \rightarrow 0}{\rightarrow}-\frac{1}{2} a_{D}^{2} \log \frac{a_{D}}{\Lambda}-8 \Lambda a_{D}+a_{D}^{2} \sum_{k>0} f_{k}^{D}\left(\frac{a_{D}}{\Lambda}\right)^{k}
$$

Different powers: no instantons in monopole theory! No way to compute $\left\{f_{k}^{D}\right\}$ other, than to solve a Painlevé equation ...

SU(2)/Painlevé

- Deautonomization: integrable (or isospectral) \Rightarrow isomonodromic system;
- 'SW Toda' (physical pendulum) \Rightarrow Painlevé III

$$
\begin{equation*}
\frac{d^{2} q}{d \tau^{2}}+e^{2 \tau} \sinh q=0 \tag{5}
\end{equation*}
$$

- In conventional "isomonodromic" variables $\left(t \sim \Lambda^{4}, w \sim \sqrt{t} e^{q}\right)$

$$
\begin{equation*}
H\left(w, w^{\prime} ; t\right)=\frac{t w^{\prime 2}}{4 w^{2}}+\frac{w}{t}+\frac{1}{w}=\partial_{t} \log \mathcal{T}(t) \tag{6}
\end{equation*}
$$

and $\left(w_{1}=t / w\right)$

$$
\begin{equation*}
w(t)^{-1}=\partial_{t} t \partial_{t} \log \mathcal{T}(t)=-t^{1 / 2} \frac{\mathcal{T}_{1}(t)^{2}}{\mathcal{T}(t)^{2}} \tag{7}
\end{equation*}
$$

Tau-functions

The isomonodromic tau functions $(\epsilon=\emptyset, 1)$

$$
\begin{equation*}
\mathcal{T}_{\epsilon}(t ; a, \eta) \underset{t \rightarrow 0}{=} \sum_{n \in \mathbb{Z}+\epsilon / 2} e^{4 \pi i n \eta} t^{(a+n)^{2}} \frac{\mathcal{B}(a+n, t)}{G(1+2(a+n)) G(1-2(a+n))} \tag{8}
\end{equation*}
$$

expressed through partition functions (of deformed) $S U(2)$ gauge theory.

- $t \sim \Lambda^{4},(a, \eta)$ are two yet independent integration constants, $t^{a^{2}}$ - classical part ;
- Barnes G-functions $G(a+1)=\Gamma(a) G(a) \underset{a \rightarrow \infty}{\sim} \exp \left(\frac{1}{2} a^{2} \log a\right)$;
- $\mathcal{B}(a, t)=\sum_{\lambda, \mu} t^{|\lambda|+|\mu|}\left(\frac{a+\ldots}{a+\ldots}\right)$: Nekrasov instanton partition function, $|\lambda|+|\mu|=k ;$

Painlevé/SYM

- Analytic properties of the Painlevé solutions contain important information about non-perturbative SYM: Already $t \sim \Lambda^{4}$ gives $4=2 \Lambda$ pure $S U(2)$ beta-function ...
- Expansion in $t=\Lambda^{4}$ at $t \rightarrow 0$ and in $t^{-1 / 4}=\Lambda^{-1}$ at $t \rightarrow \infty$;
- Non-autonomous Toda equation

$$
\begin{equation*}
\partial_{t} t \partial_{t} \log \mathcal{T}(t)=-t^{1 / 2} \frac{\mathcal{T}_{1}(t)^{2}}{\mathcal{T}(t)^{2}} \tag{9}
\end{equation*}
$$

an analog of $\frac{\partial^{2} \mathcal{F}}{\partial \tau^{2}}=\exp \frac{\partial^{2} \mathcal{F}}{\partial a^{2}}$.

- 'Gravitational flows': the Nakajima-Yoshioka blow-up equations from simple analysis.

Quivers, gauge theories and Poisson manifolds

- Simple combinatorial objects: vertices with arrows;
- Consistent pictures for gauge theories, generally with bi-fundamentals (Standard Model?);
- More applications: symplectic or Poisson structures
- Lattices of BPS-charges in supersymmetric theories;
- Extended phase spaces of integrable systems.
'Fd' or relativistic is on Poison cluster varieties

Application: Painlevé Newton Polygons

with a single internal point and $3 \leq B \leq 9$ boundary points:

Here $\Sigma: f_{\Delta}(\lambda, \mu)=\sum_{(a, b) \in \Delta} \lambda^{a} \mu^{b} f_{a, b}=0$ is torus with $g=1$.

Application: Painlevé quivers

$A_{8}^{(1)}$
$A_{7}^{(1)^{\prime}}$
$A_{7}^{(1)}$

Notations: Sakai classification

by (surface type)/(symmetry group)

- $\mathcal{G}_{\mathcal{Q}} \supset \widehat{W}\left(E_{\#}^{(1)}\right)$;
- $\widehat{W}\left(E_{0}^{(1)}\right)=\mathbb{Z} / 3 \mathbb{Z}$;
- From $E_{1}^{(1)}=A_{1}^{(1)}$ till $E_{5}^{(1)}=D_{5}^{(1)}$ q-Painlevé with well-defined 4d limit (from PIII to PVI);
- Higher $E_{7}^{(1)}$ and $E_{8}^{(1)}$ do not have corresponding (naive) $g=1$ triangles.

Predictions: 5d field theory

- Well-defined solutions exist for $N_{f} \leq 2 N(=4)$): restriction from 4d β-function (IR!);
- q-Painlevé systems themselves exist for $N_{f} \leq 7$, when ... 5d theory (in UV!) can be defined (Seiberg, 1995);
- $\mathcal{G}_{\mathcal{Q}} \supset \widehat{W} \supset W$ extends to global symmetry of 5d theory in UV (?!);

