Modern Trends in Mathematical Physics. II

 (for pedestrians ... cyclists and drivers)Andrei Marshakov

Center for Advanced Studies, Skoltech

Moscow International School of Physics 2022
JINR, Dubna, July 2022

Short summary

Mathematical physics:

- Liouville theory and 2d quantum gravity (with conformal matter);
- Generally: lack of naive continuation into higher dimensions;
- Partially possible - only for particular class of theories;
- Use of complexification, supersymmetry etc ...

Physical aims

Any physics?:

- Allows to address important physical questions:
- Vacua solutions: number of/or space (moduli) of vacua ... branches ...;
- Spectrum of (light?) excitations ... 'BPS-defended'
- Conjecture exact answers (physical intuition?);
- Mathematical 'proof' ... consistency ...;

Physical pendulum

EOM:

$$
\begin{equation*}
\ddot{q}+\Lambda^{2} \sin q=0, \quad \Lambda^{2}=\frac{g}{l} \tag{1}
\end{equation*}
$$

- $\sin q \underset{q \simeq 0}{\simeq} q$ - mathematical pendulum (harmonic oscilator);
- Integrated from energy conservation

$$
\begin{equation*}
U=\frac{1}{2} p^{2}-\Lambda^{2} \cos q=\frac{1}{2} \dot{q}^{2}-\Lambda^{2} \cos q \tag{2}
\end{equation*}
$$

with

$$
\begin{equation*}
t=\int \frac{d q}{p}=\frac{\partial}{\partial U} \int p d q \tag{3}
\end{equation*}
$$

Integrability

- Integrable (as any) system with $\operatorname{dim} \mathcal{M}=2$ and conserved energy (integral of motion!);
- Generalized to $\operatorname{dim} \mathcal{M}=2 \cdot \# \mathrm{IOM}$ (Liouville-Arnold);
- Complexification: $(p, \exp (i q)) \subset(\lambda, w) \in \mathbb{C} \times \mathbb{C}^{\times}$

$$
\begin{aligned}
\Sigma & : \Lambda^{2}\left(w+\frac{1}{w}\right)=\lambda^{2}-U \\
t & \sim \int \frac{d w}{w \lambda} \sim \int \frac{d \lambda}{w-\frac{1}{w}}
\end{aligned}
$$

(Elliptic) integral of a holomorphic differential on torus - elliptic curve Σ :
(why - a problem for a seminar?)

Integrable systems

Integrability with $\# \mathrm{IOM}>2$ is a very nontrivial property $(E=U, P, \ldots)$

Problem (!?): for a system with Hamiltonian $H=\frac{1}{2} \sum_{i=1}^{3}\left(p_{i}^{2}+\exp \left(q_{i+1}-q_{i}\right)\right)$ find all independent IOM.

- In practice: existence of Lax representation or overdetermined system of N^{2} equations for $\operatorname{dim} \mathcal{M}=2 \cdot N$ variables \Rightarrow complexification;
- Toda systems: $L=p \cdot h+\sum_{\alpha \in \Pi} \exp (\alpha \cdot q)\left(e_{\alpha}+f_{\alpha}\right)$ (over simple roots of Lie algebras \Rightarrow Lie groups);
- $\Sigma: 0=\operatorname{det}(\lambda-L(w))=P(\lambda)-w-\frac{1}{w}, P(\lambda)$ generates IOM;
- $\Sigma^{\otimes g} \subset \mathcal{T}^{g}$: linearization of dynamic.

Complex curves

Riemann surface $(g=3) \Sigma$:

Smooth Riemann surface (of genus 3) with marked A - and B-cycles.

Lattice of charges $\Leftrightarrow H_{1}(\Sigma)$ with symplectic $\langle\rangle,,\left\langle A_{i}, B_{j}\right\rangle=\delta_{i j}$.
Period matrix: $\operatorname{Im} T_{i j} \geq 0, T \underset{\text { degeneration }}{\rightarrow} \log a$

Period matrices

Computation of elliptic integrals $\oint \lambda \frac{d w}{w}$ or $\oint \frac{d w}{w \lambda}$ on $\Sigma: w+\frac{\Lambda^{4}}{w}=\lambda^{2}-U$
At $\Lambda \rightarrow 0$, for $U=a^{2}$

$$
\begin{equation*}
w=\lambda^{2}-a^{2} \tag{4}
\end{equation*}
$$

so that

$$
\oint \lambda \frac{d w}{w}=\oint \lambda d \log \left(\lambda^{2}-a^{2}\right) \sim\left\{\begin{array}{c}
a \\
a \log a-a
\end{array}\right.
$$

The period "matrix" $\tau \sim \frac{\partial}{\partial a}(a \log a-a)=\log a$, or

$$
\begin{equation*}
\tau \sim \int_{-a}^{a} d \log \left(\lambda^{2}-a^{2}\right) \sim \log a \tag{5}
\end{equation*}
$$

- To be identified with complexified gauge coupling $\tau \sim \frac{\vartheta}{2 \pi}+i \frac{4 \pi^{2}}{g^{2}}$;
- Any parallels with QFT?

