Cosmology and Particle Physics

V.A. Rubakov

Institute for Nuclear Research of the Russian Academy of Sciences

Department of Particle Physics and Cosmology Physics Faculty M.V. Lomonosov Moscow State University

Outline of Lecture 1

- Expanding Universe
- Dark matter: evidence
- WIMPs

Expanding Universe

The Universe at large is homogeneous, isotropic and expanding.

3d space is Euclidean (observational fact!)

Sum of angles of a triangle = 180° , even for triangles as large as the size of the visible Universe.

All this is encoded in space-time metric (Friedmann–Lemâitre–Robertson–Walker)

 $ds^2 = dt^2 - a^2(t)\mathbf{dx}^2$

 \mathbf{x} : comoving coordinates, label distant galaxies.

a(t)dx: physical distances.

a(t): scale factor, grows in time; a_0 : present value (matter of convention)

Space-time metric

$$ds^2 = dt^2 - a^2(t)\mathbf{dx}^2$$

a(t)dx: physical distances.

a(t): scale factor, grows in time; a_0 : present value

$$z(t) = \frac{a_0}{a(t)} - 1$$
: redshift

Light of wavelength λ emitted at time *t* has now wavelength $\lambda_0 = \frac{a_0}{a(t)}\lambda = (1+z)\lambda; \quad z(t):$ redshift

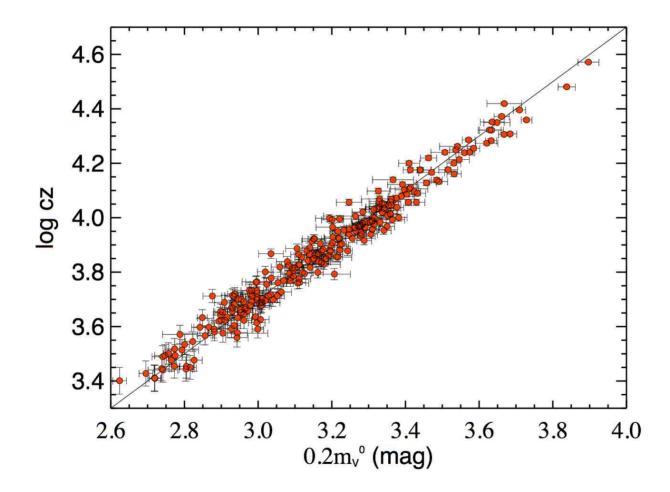
Momenta of all free particles scale as $p \propto a^{-1} \propto (1+z)$. Example: neutrinos were relativistic early on, non-relativistic now.

$$H(t) = \frac{\dot{a}}{a}$$
: Hubble parameter, expansion rate

 $H^{-1}(t)$: time scale at a given epoch.

Present value (Planck; under some debate)

$$H_0 = (67.4 \pm 0.5) \ \frac{\mathrm{km/s}}{\mathrm{Mpc}} = (14 \cdot 10^9 \ \mathrm{yrs})^{-1}$$

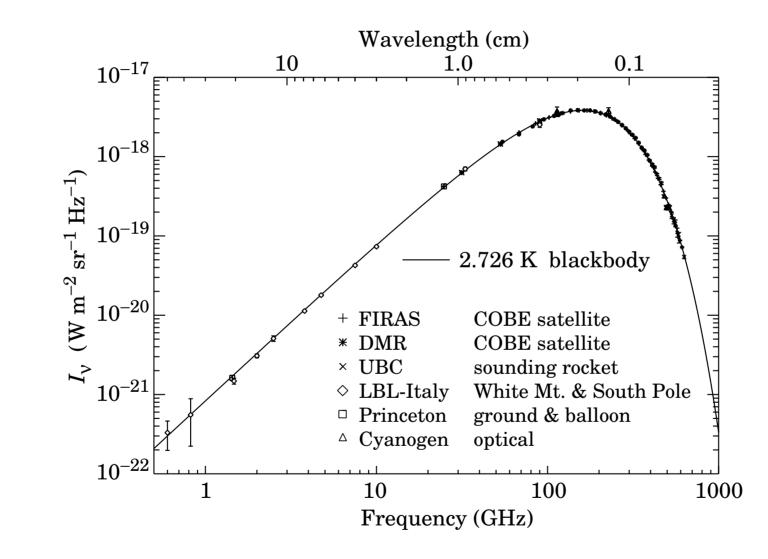

 $1 \text{ Mpc} = 3 \cdot 10^6 \text{ light yrs} = 3 \cdot 10^{24} \text{ cm}$

- NB: length scales today:
- visible part of a galaxy $\sim 10 \text{ kpc}$
- dark halo of a galaxy $\sim 100 \text{ kpc} = 0.1 \text{ Mpc}$
- cluster of galaxies $\sim 1 3$ Mpc
- visible Universe = 14 Gpc

 $z = H_0 r$

Problem: prove the Hubble law

Hubble diagram, log-log plot


● The Universe is warm: CMB temperature today

 $T_0 = 2.7255 \pm 0.0006$ K

It was denser and warmer at early times.

Fig.

CMB spectrum

T = 2.726 K

Present number density of photons

$$n_{\gamma} = \#T^3 = 410 \frac{1}{\mathrm{cm}^3}$$

Present entropy density

$$s = 2 \cdot \frac{2\pi^2}{45} T_0^3 + \text{neutrino contribution} = 3000 \frac{1}{\text{cm}^3}$$

In early Universe (Bose–Einstein, Fermi–Dirac)

$$s=\frac{2\pi^2}{45}g_*T^3$$

 g_* : number of relativistic degrees of freedom with $m \leq T$; fermions contribute with factor 7/8.

Slow expansion \implies entropy conservation \implies Entropy density scales exactly as a^{-3}

Temperature scales approximately as a^{-1} .

Dynamics of expansion

Friedmann equation: expansion rate of the Universe vs total energy density ρ ($M_{Pl} = G^{-1/2} = 10^{19}$ GeV):

$$\left(\frac{\dot{a}}{a}\right)^2 \equiv H^2 = \frac{8\pi}{3M_{Pl}^2}\rho$$

Einstein equations of General Relativity specified to homogeneous isotropic space-time with zero spatial curvature

Present energy density

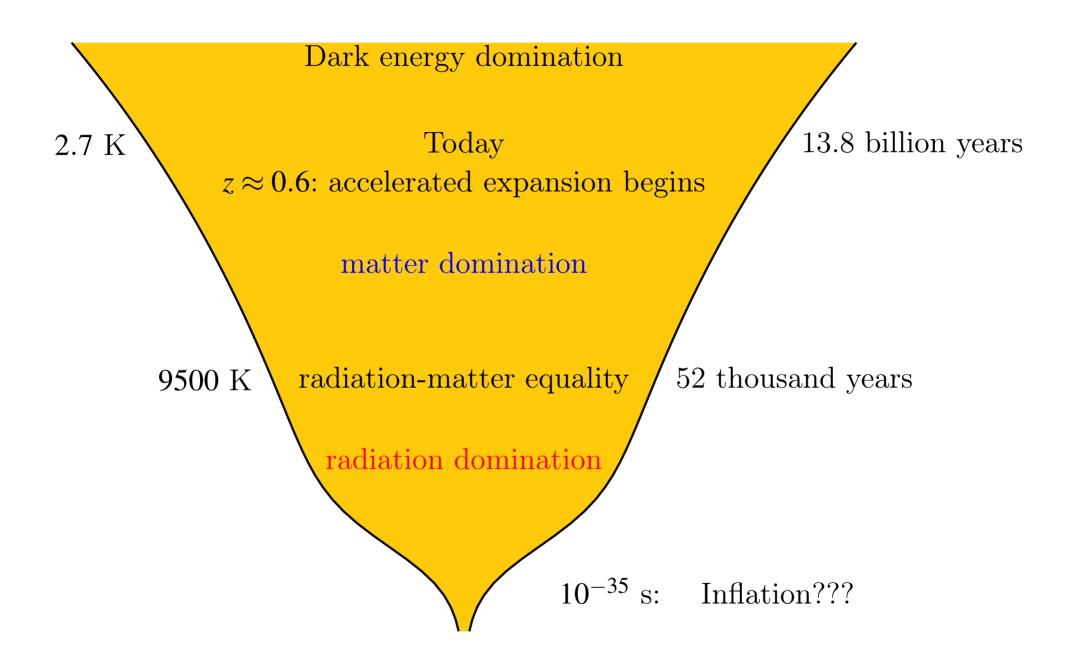
$$\rho_0 = \rho_c = \frac{3M_{Pl}^2}{8\pi} H_0^2 = 5 \cdot 10^{-6} \frac{\text{GeV}}{\text{cm}^3}$$
$$= 5\frac{m_p}{\text{m}^3}$$

 $\hbar = c = k_B = 1$ in what follows

Present composition of the Universe

$$\Omega_i = \frac{\rho_{i,0}}{\rho_c}$$

present fractional energy density of *i*-th type of matter.


$$\sum_{i} \Omega_i = 1$$

$$\rho_{rad} = \omega(t)n(t) \quad \text{scales as } \left(\frac{a_0}{a(t)}\right)^4$$

Friedmann equation

$$H^{2}(t) = \frac{8\pi}{3M_{Pl}^{2}} \left[\rho_{\Lambda} + \rho_{M}(t) + \rho_{rad}(t) \right] = H_{0}^{2} \left[\Omega_{\Lambda} + \Omega_{M} \left(\frac{a_{0}}{a(t)} \right)^{3} + \Omega_{rad} \left(\frac{a_{0}}{a(t)} \right)^{4} \right]$$

 $\begin{array}{l} \ldots \Longrightarrow \mbox{Radiation domination} \Longrightarrow \mbox{Matter domination} \Longrightarrow \mbox{\Lambda-domination} \\ z_{eq} = 3500 & \mbox{now} \\ T_{eq} = 9500 \ \mbox{K} = 0.8 \ \mbox{eV} \\ t_{eq} = 52 \cdot 10^3 \ \mbox{yrs} \end{array}$

Expansion at radiation domination

Expansion law:

$$H^2 = \frac{8\pi}{3M_{Pl}^2}\rho \implies \frac{\dot{a}^2}{a^2} = \frac{\mathrm{const}}{a^4}$$

Solution:

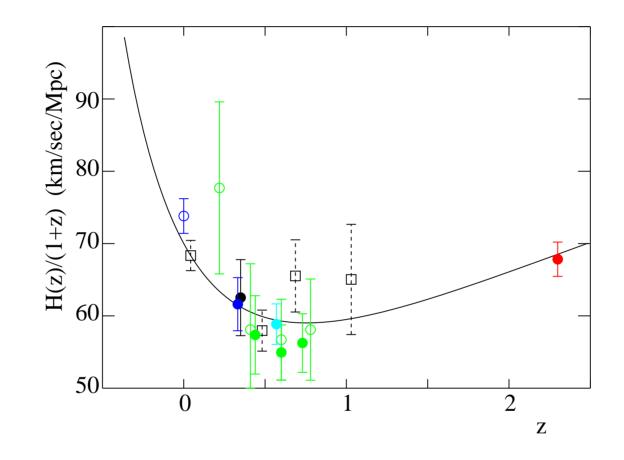
$$a(t) = \operatorname{const} \cdot \sqrt{t}$$

 \bullet t = 0: Big Bang singularity

$$H = \frac{\dot{a}}{a} = \frac{1}{2t}$$
, $\rho \propto \frac{1}{t^2}$

• Decelerated expansion: $\ddot{a} < 0$.

NB: Matter domination: $a(t) = \text{const} \cdot t^{2/3}$; decelerated expansion: $\ddot{a} < 0$


9 NB: Λ -domination

$$\frac{\dot{a}^2}{a^2} = \frac{8\pi}{3M_{Pl}^2} \rho_{\Lambda} = \text{const} \Longrightarrow a(t) = e^{H_{\Lambda}t}$$

accelerated expansion

Fig.

Deceleration to acceleration

 $\frac{H}{1+z} = \frac{\dot{a}}{a} \cdot \frac{a}{a_0} = \frac{\dot{a}}{a_0} = \dot{a}(z); \quad \text{large } z \iff \text{ early time}$

Cosmological (particle) horizon

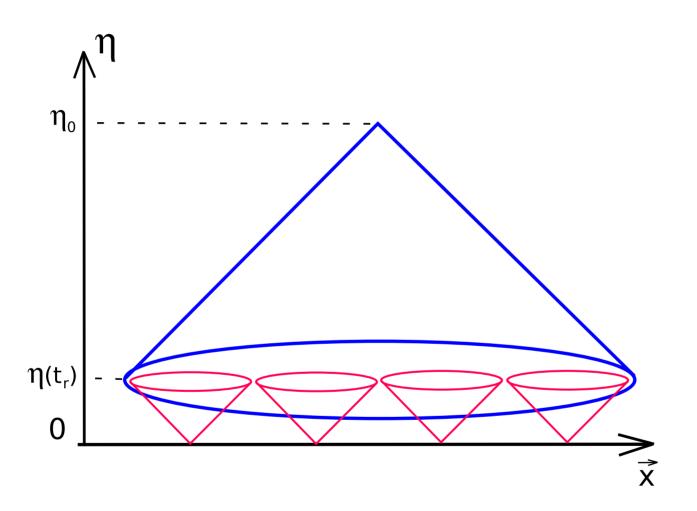
Light travels along $ds^2 = dt^2 - a^2(t)d\mathbf{x}^2 = 0 \implies dx = dt/a(t)$. If emitted at t = 0, travels finite coordinate distance

 $\eta = \int_0^t \frac{dt'}{a(t')} \propto \sqrt{t}$ at radiation domination

 $\eta \propto \sqrt{t} \Longrightarrow$ visible Universe increases in time

Physical size of causally connected region at time t (horizon size)

$$l_{H,t} = a(t) \int_0^t \frac{dt'}{a(t')} = 2t$$
 at radiation domination


In hot Big Bang theory at both radiation and matter domination

 $l_{H,t} \sim t \sim H^{-1}(t)$

Today $l_{H,t_0} \approx 15 \text{ Gpc} = 4.5 \cdot 10^{28} \text{ cm}$

Fig.

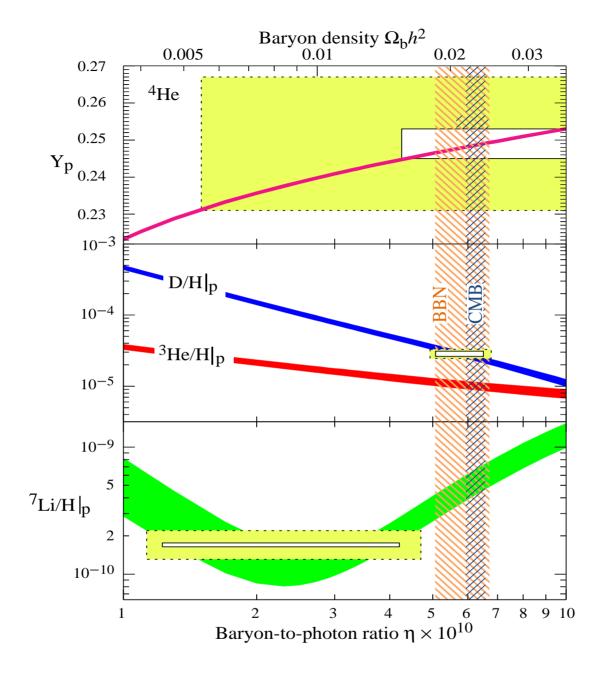
Causal structure of space-time in hot Big Bang theory

Regions of Hubble size have not talked to each other (are causally disconnected).

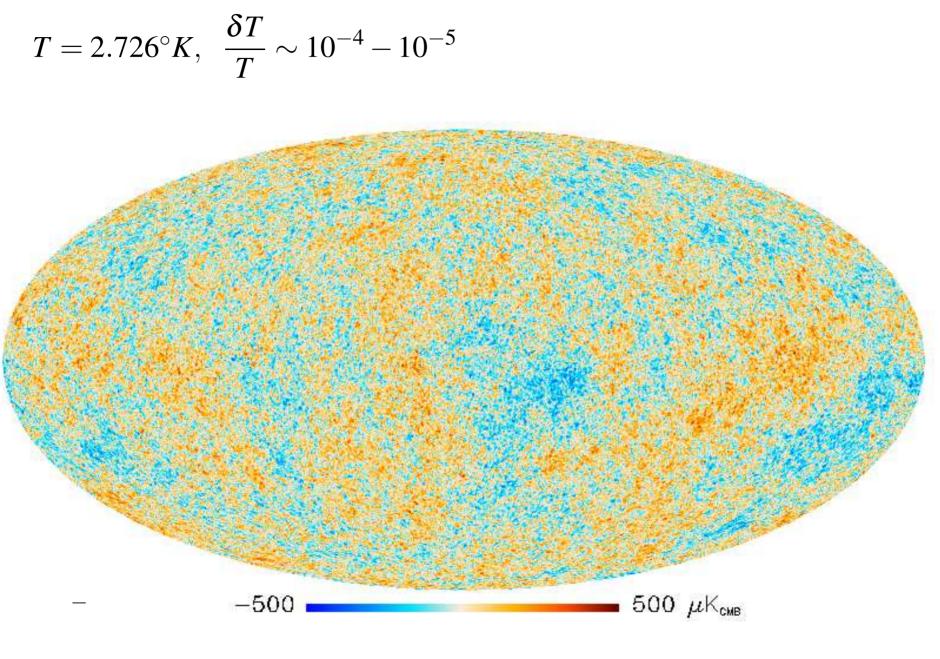
We see many such regions. Why are they all the same?

Cornerstones of thermal history

- Neutrino decoupling: T = 2 3 MeV ~ $3 \cdot 10^{10}$ K, $t \sim 0.1 1$ s
- **Big Bang Nucleosynthesis**, epoch of thermonuclear reactions


$$p+n \rightarrow {}^{2}H$$

$${}^{2}H+p \rightarrow {}^{3}He$$


$${}^{3}He+n \rightarrow {}^{4}He$$
up to
$${}^{7}Li$$

Abundances of light elements: measurements vs theory $T = 10^{10} \rightarrow 10^9 \text{ K}, \quad t = 1 \rightarrow 300 \text{ s}$ Earliest time in thermal history probed quantitatively so far Fig.

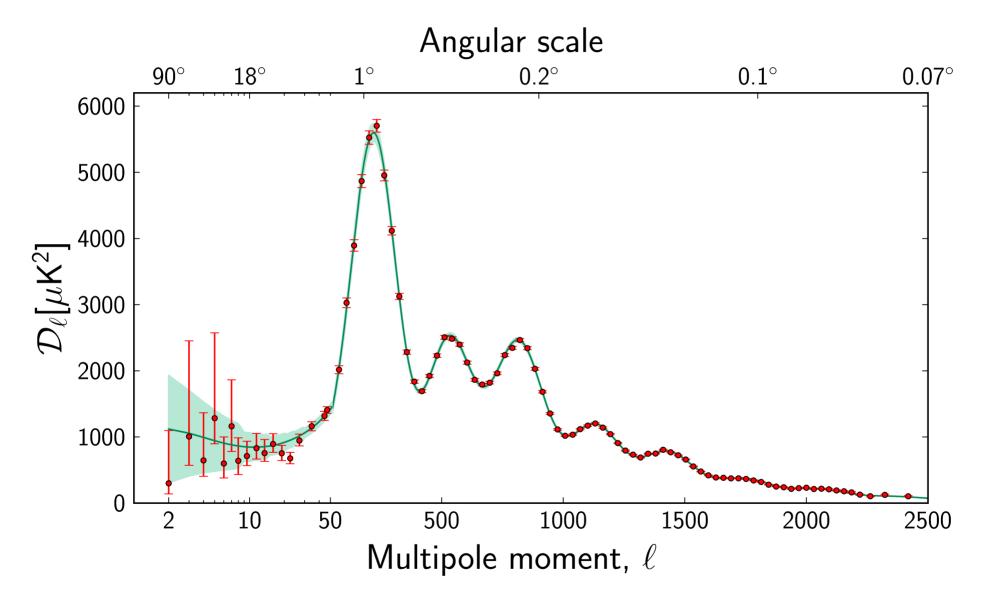
Recombination, transition from plasma to gas.
 $z = 1090, T = 3000 \text{ K}, t = 380\ 000 \text{ years}$ Last scattering of CMB photons
 Photographic picture of young Universe

 $\eta_{10} = \eta \cdot 10^{-10} = \text{baryon-to-photon ratio.}$ Consistent with CMB determination of η

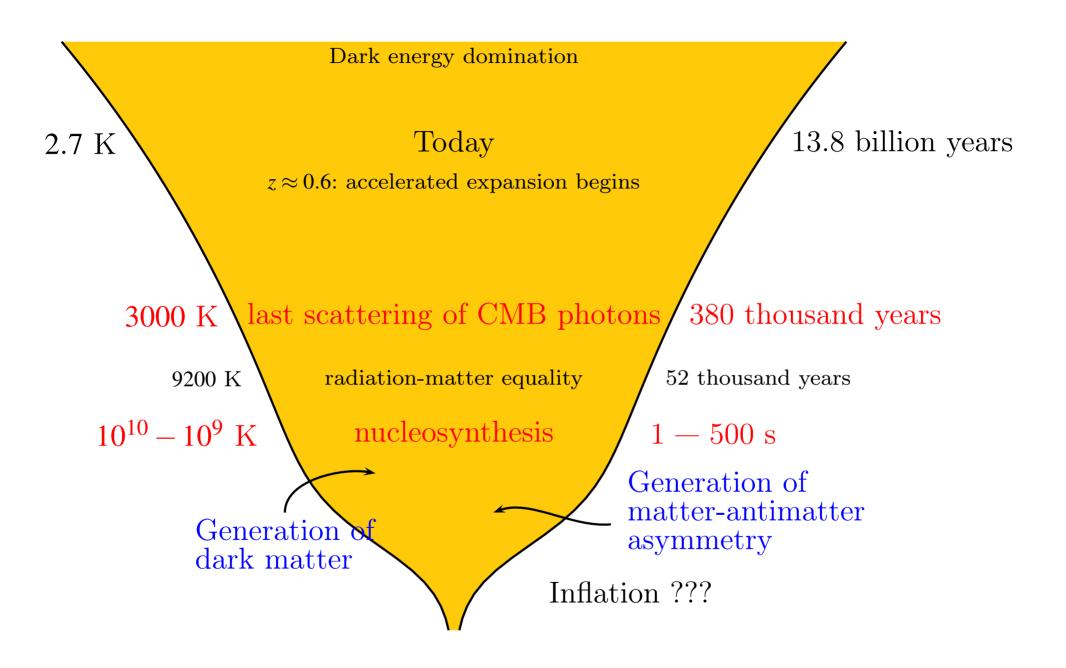
Planck

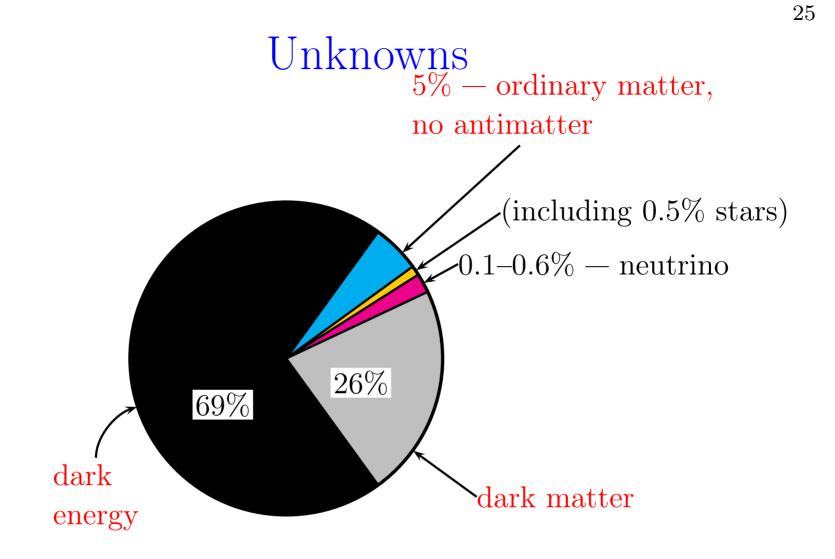
Fourier decomposition of temperatue fluctuations:

$$\frac{\delta T}{T}(\boldsymbol{\theta},\boldsymbol{\varphi}) = \sum_{l,m} a_{lm} Y_{lm}(\boldsymbol{\theta},\boldsymbol{\varphi})$$


 $\begin{array}{l} a_{lm}: \text{ independent Gaussian random variables, } \langle a_{lm}a_{l'm'}^* \rangle \propto \delta_{ll'}\delta_{mm'} \\ \langle a_{lm}^*a_{lm} \rangle = C_l \text{ are measured; usually shown } D_l = \frac{l(l+1)}{2\pi}C_l \\ \text{ larger } l \iff \text{ smaller angular scales, shorter wavelengths} \end{array}$

NB: One Universe, one realization of an ensemble \implies cosmic variance $\Delta C_l/C_l \simeq 1/\sqrt{2l}$


- Physics:
 - Primordial perturbations
 - Development of sound waves in cosmic plasma from early hot stage to recombination; gravitational potentials due to dark matter at recombination \implies composition of cosmic plasma
 - Propagation of photons after recombination \implies expansion history of the Universe


CMB angular spectrum

Angular scale of acoustic peaks known with precision 0.03% (!)

