## Flavor Physics

## P. Pakhlov

Moscow International School of Physics 2022

## Lecture 3

## where we discuss B-mesons and $B$ experiments



## Cabibbo-Kobayashi-Maskawa matrix

generalization on the 3 -generations case: weak quark mixing $3 \times 3$ matrix

$$
L_{W^{ \pm}}=-\frac{g}{\sqrt{2}}(\bar{u}, \bar{c}, \bar{t})_{L} V_{C K M}\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right)_{L} \gamma^{\mu} W_{\mu}^{-} \ldots \quad V_{C K M}=V_{L}^{u} \cdot V_{L}^{d^{\dagger}}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

KM-parameterization
$\left(\begin{array}{lll}\cos \theta_{1} & -\sin \theta_{1} \cos \theta_{3} & -\sin \theta_{1} \sin \theta_{3} \\ \sin \theta_{1} \cos \theta_{2} \cos \theta_{1} \cos \theta_{2} \cos \theta_{3}-\sin \theta_{2} \sin \theta_{3} e^{i \delta} & \cos \theta_{1} \cos \theta_{2} \sin \theta_{3}+\sin \theta_{2} \cos \theta_{3} e^{i \delta} \\ \sin \theta_{1} \sin \theta_{2} & \cos \theta_{1} \sin \theta_{2} \cos \theta_{3}+\cos \theta_{2} \sin \theta_{3} e^{i \delta} & \cos \theta_{1} \sin \theta_{2} \sin \theta_{3}-\cos \theta_{2} \sin \theta_{3} e^{i \delta}\end{array}\right)$

PDG-reparameterization

$$
\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right)
$$

## CPV in the KM Model

KM ansatz is a necessity for CP -violation
Sufficiency for CPV in KM ansatz:
$\left(m_{t}^{2}-m_{c}^{2}\right) \times\left(m_{t}^{2}-m_{u}^{2}\right) \times\left(m_{c}^{2}-m_{u}^{2}\right)$
where $J_{C P}$ is Jarlskog determinant
$\times\left(m_{b}^{2}-m_{s}^{2}\right) \times\left(m_{b}^{2}-m_{d}^{2}\right) \times\left(m_{s}^{2}-m_{d}^{2}\right) \times J_{C P} \neq 0 \quad J_{C P}=\left|\operatorname{Im}\left(V_{i \alpha} V_{j \beta} V_{i \beta}^{*} V_{j \alpha}^{*}\right)\right| \quad(i \neq j, \alpha \neq \beta)$
Why are quarks required to have different masses?
Elements values (PDG)

$$
\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right) \approx\left(\begin{array}{lll}
0.9743 & 0.2253 & 0.0035 \\
0.2252 & 0.9734 & 0.0412 \\
0.0087 & 0.0404 & 0.9991
\end{array}\right) \pm\left(\begin{array}{lll}
0.0002 & 0.0007 & 0.0002 \\
0.0007 & 0.0002 & 0.0010 \\
0.0003 & 0.0010 & 0.0001
\end{array}\right) \quad \begin{aligned}
& \text { Almost identity } \\
& \text { Almost diagonal } \\
& \text { Almost symmetric }
\end{aligned}
$$

observe hierarchy $\left(\begin{array}{lll}V_{u d} & V_{u s} & V_{u b} \\ V_{c d} & V_{c s} & V_{c b} \\ V_{d d} & V_{d} & V_{b}\end{array}\right) \approx\left(\begin{array}{ccc}1 & \lambda & \lambda^{3} \\ \lambda & 1 & \lambda^{2} \\ \lambda^{3} & \lambda^{2} & 1\end{array}\right) \quad$ where $\lambda=\sin \theta_{C} \approx 0.23$

CPV is tiny in SM ; it is not enough to produce BAU

## Wolfenstein parameterization

$$
\lambda=s_{12}=\sin \theta_{12} \approx 0.23 \quad A=\frac{s_{23}}{s_{12}^{2}} \approx 0.8 \quad \rho=\frac{s_{13} \cos \delta}{s_{12} s_{23}} \quad \eta=\frac{s_{13} \sin \delta}{s_{12} s_{23}}
$$

(expansion on a small parameter $\lambda$ )

magnitudes


Reflects hierarchy of strengths of quark transitions


$$
\begin{gathered}
\mathrm{u} \\
\mathrm{O}(1) \mathrm{C}
\end{gathered}
$$

$$
\begin{array}{cc}
\mathrm{c} & -=\because \mathrm{O}(\lambda) \\
& =-\mathrm{O}\left(\lambda^{2}\right)
\end{array}
$$

$$
\text { Charge }+2 / 3
$$

## Unitarity triangle

Unitarity condition of CKM matrix $V_{\text {CKM }}^{\dagger} \cdot V_{C K M}=V_{C K M} \cdot V_{\text {CKM }}^{\dagger}=1$ gives 9 constrains $V_{i j} V_{i k}^{*}=\delta_{j k} ; 3$ corresponds to $j=k$ and says that the probability for each quark to couple to $W^{-}$is summed up to $1 ; 6$ unitarity conditions, when $j \neq k$, can be represented by triangles in the complex plane:

- All six triangles have the same area $=1 / 2$ Jarlskog determinant
- 4 are degenerated (almost squizeed to a line)

- Only in two triangles all three sides of the same order $\mathrm{O}\left(\lambda^{3}\right)$
- These two are related to the $3^{\text {rd }}$ quark generation

$$
\underbrace{V_{u d} V_{u b}^{*}}_{(\rho+i \eta) A \lambda^{3}}+\underbrace{V_{c d} V_{c b}^{*}}_{-A \lambda^{3}}+\underbrace{V_{t d} V_{t b}^{*}}_{(1-\rho-i \eta) A \lambda^{3}}=0 \quad \underbrace{V_{u d}^{*} V_{t d}}_{(1-\rho-i \eta) A \lambda^{3}}+\underbrace{V_{u s}^{*} V_{t s}}_{-A \lambda^{3}}+\underbrace{V_{u b}^{*} V_{t b}}_{(\rho+i \eta) A \lambda^{3}}=0
$$

## One (the most important) Unitarity Triangle

$$
\mathrm{V}_{\mathrm{ud}}^{*} \mathrm{~V}_{\mathrm{ub}}+\mathrm{V}_{\mathrm{cd}}^{*} \mathrm{~V}_{\mathrm{cb}}+\mathrm{V}_{\mathrm{td}}^{*} \mathrm{~V}_{\mathrm{tb}}=\mathrm{o}
$$

Convenient to normalize all sides to the base of the triangle ( $V_{c d} V_{c b}^{*}=A \lambda^{3}$ ).


We want to study this triangle. Its each side is related to b-quark decay, we thus use B-mesons for our study!

## B-mesons

## What are B mesons?

| name | quarks | charge | mass <br> $(\mathrm{GeV})$ | lifetime <br> $\left(10^{-12} \mathrm{~s}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| $B_{d}^{0}$ or $B^{0}$ | $\bar{b} d$ | 0 | 5.2796 | 1.519 |
| $B_{u}^{+}$or $B^{+}$ | $\bar{b} u$ | +1 | 5.2793 | 1.641 |
| $B_{s}^{0}$ | $\bar{b} s$ | 0 | 5.3668 | 1.463 |
| $B_{c}^{+}$ | $\bar{b} c$ | +1 | 6.277 | 0.45 |

Spin-parity
$J^{P}=0^{-}$

How are they produced?

- $e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow B \bar{B}$ is the cleanest process (large $B \bar{B}$ /other cross section; no extra particles; quantum correlations)
- also at hadron machines: $p p \rightarrow B+\bar{B}+$ anything



## Neutral mesons oscillations

Time evolution of $B^{0}$ and $\bar{B}^{0}$ can be described by an effective Hamiltonian:

$$
i \frac{\partial}{\partial t} \Psi=H \Psi
$$

Hamiltonian is just a numerical (complex) matrix $2 \times 2$

$$
\Psi(t)=a(t)\left|B^{0}\right\rangle+b(t)\left|\bar{B}^{0}\right\rangle \equiv\binom{a(t)}{b(t)}
$$

\(H=\underbrace{\left($$
\begin{array}{cc}M & 0 \\
0 & M\end{array}
$$\right)}_{hermitian}-\frac{i}{2} \underbrace{\left(\begin{array}{cc}\Gamma \& 0 <br>

0 \& \Gamma\end{array}\right)}_{hermitian}\)\begin{tabular}{l}

| Here we still have no mixing (no off-diagonal terms); note, that |
| :--- |
| Hamiltoniam is not Hermitian! because of decay, probability of |
| observing either $B^{o}$ or $B^{o}$ must decrease with time |$\Rightarrow \Gamma>0$

\end{tabular}

Add mixing
note, $M_{21}=M_{12}{ }^{*}$ and $\Gamma_{21}=\Gamma_{12}{ }^{*}$
from CPT invariance
off-diagonal $M_{\text {term is due to off-shell }}$ states like box diagram
off-diagonal $\Gamma$ is due to on-shell states, e.g. $\pi \pi, D D . .$.

## Find eigenstates

Mass and lifetime of physical states: mass eigenstates

$$
i \partial_{t} \psi(t)=\left(\begin{array}{cc}
M-\frac{i}{2} \Gamma & M_{12}-\frac{i}{2} \Gamma_{12} \\
M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*} & M-\frac{i}{2} \Gamma
\end{array}\right) \psi(t)
$$

Eigenstates are linear combinations of meson-antimeson

$$
\begin{aligned}
& \left|P_{1}\right\rangle=p\left|P^{0}\right\rangle-q\left|\bar{P}^{0}\right\rangle \\
& \left|P_{2}\right\rangle=p\left|P^{0}\right\rangle+q\left|\bar{P}^{0}\right\rangle
\end{aligned}
$$

to find $p$ and $q$ solve the equation

$$
\begin{gathered}
\left(\begin{array}{cc}
M-\frac{i}{2} \Gamma & M_{12}-\frac{i}{2} \Gamma_{12} \\
M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*} & M-\frac{i}{2} \Gamma
\end{array}\right)\binom{p}{q}=\lambda_{ \pm}\binom{p}{q} \\
\frac{q}{p}=\sqrt{\frac{M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}}{M_{12}-\frac{i}{2} \Gamma_{12}}}
\end{gathered}
$$

Eigenstates's evolution is normal decay law without oscillations!

$$
\begin{aligned}
& \left|P_{1}(t)\right\rangle=e^{-i m_{1} t-\frac{1}{2} \Gamma_{1} t}\left|P_{1}(0)\right\rangle \\
& \left|P_{2}(t)\right\rangle=e^{-i m_{2} t-\frac{1}{2} \Gamma_{2} t}\left|P_{2}(0)\right\rangle
\end{aligned}
$$

$P_{1}$ and $P_{2}$ have proper masses and lifetimes
Evolution of the flavor eigenstates is a little bit more complicated

$$
\left|P^{0}(t)\right\rangle=\frac{1}{2}\left(e^{-i m_{1} t-\frac{1}{2} \Gamma_{1} t}+e^{-i m_{2} t-\frac{1}{2} \Gamma_{2} t}\right)\left|P^{0}(0)\right\rangle+\frac{q}{2 p}\left(e^{-i m_{1} t-\frac{1}{2} \Gamma_{1} t}-e^{-i m_{2} t-\frac{1}{2} \Gamma_{2} t}\right)\left|\bar{P}^{0}(0)\right\rangle
$$

## We know 4 neutral mesons that can oscillate

Probability to find $P^{0}$ or $\bar{P}^{0}$, when start with pure $P^{0}$-beam



Their oscillations looks so much different... but this is just different numerical values

$$
\begin{array}{ll}
m=\frac{m_{1}+m_{2}}{2}, & \Delta m=m_{1}-m_{2} \\
\Gamma=\frac{\Gamma_{1}+\Gamma_{2}}{2}, & \Delta \Gamma=\Gamma_{1}-\Gamma_{2}
\end{array}
$$

|  | $<\tau\rangle$ [s] | $\Delta \mathrm{m}$ | $x=\Delta \mathrm{m} / \Gamma$ | $y=\Delta \Gamma / 2 \Gamma$ |
| :---: | :---: | :---: | :---: | :---: |
| Ko | $2.6 \times 10^{-8}$ | $5.29 \mathrm{~ns}^{-1}$ | $\Delta \mathrm{m} / \Gamma_{S}=0.49$ | $\sim 1$ |
| $\mathrm{D}^{\text {o }}$ | $0.41 \times 10^{-12}$ | $0.001 \mathrm{fs}^{-1}$ | $\sim 0$ | 0.01 |
| $\mathrm{B}^{\text {o }}$ | $1.53 \times 10^{-12}$ | $0.507 \mathrm{ps}^{-1}$ | 0.78 | $\sim 0$ |
| $\mathbf{B}_{\text {s }}{ }^{\text {o }}$ | $1.47 \times 10^{-12}$ | $17.8 \mathrm{ps}^{-1}$ | 12.1 | $\sim 0.05$ |

$\mathrm{x}=\Delta \mathrm{m} / \Gamma$ measures, how many times meson oscillates before decay (average lifetime)

## B-meson system

Common CP final states for $B^{0}$ and $\bar{B}^{0}$ :

$$
\begin{aligned}
& \Delta m \sim G_{F}^{2} m_{t}^{2} f_{B}^{2} m_{B} \operatorname{Re}\left(V_{t d}^{*} V_{t b}\right) \\
& \text { agram }
\end{aligned}
$$ not many - mainly flavor specific modes

This slightly simplify the evolution formula

$$
\begin{aligned}
&\left|B^{0}(t)\right\rangle=e^{-i m t} e^{-\frac{1}{2} \Gamma t}\left(\cos \frac{\Delta m t}{2}\left|B^{0}(0)\right\rangle+\frac{q}{p} i \sin \frac{\Delta m t}{2}\left|\bar{B}^{0}(0)\right\rangle\right)\left|\frac{q}{p}\right| \approx 1 \\
&\left|B^{0}(t)\right\rangle=e^{-i m t} e^{-\frac{1}{2} \Gamma t}\left(\cos \frac{\Delta m t}{2}\left|\bar{B}^{0}(0)\right\rangle+\frac{p}{q} i \sin \frac{\Delta m t}{2}\left|B^{0}(0)\right\rangle\right) \quad \frac{q}{p}=\sqrt{\left.\frac{M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}}{M_{12}-\frac{i}{2} \Gamma_{12}} \approx \frac{V_{t b}^{*} V_{t d}}{V_{t b} V_{t d}^{*}}\right)} \\
& \text { Contains weak phase }
\end{aligned}
$$

## Search for New Physics in CP violation



Consistency of Unitarity triangle $=$ probe for New Physics at $O(1 \mathrm{TeV})(\mathrm{B}-$ factories) and $O(5-10 \mathrm{TeV})$ (SuperB-factory +LHCb$)$

## How to study CP violation in B mesons

- No " $K_{L}$ " methods applicable!
- Lifetime difference is tiny, $\tau\left(B_{H}\right)-\tau\left(B_{L}\right) / \tau(B) \sim 1 \%$ : no way to work with a beam of long lived B's.
- Semileptonic asymmetry also vanishes.
- New ideas required!
- Sanda \& Carter (1980): consider a final state $f$ common for both $B^{0}$ and $\bar{B}^{0}$ :

$$
B^{0} \rightarrow f_{\text {common }} \leftarrow \bar{B}^{0}
$$

- ... in this place you can diagnose: they are crazy! In 1980, B mesons had not been discovered yet, only little can be hypothesized about their decay and lifetimes, but $B^{0} \bar{B}^{0}$ mixing was certainly expected to be tiny, as top quark was theoretically proven to be lighter than 20 GeV ! The evidence was so compelling that the finance ministers of many countries are allocating billions of dollars, marks, oku-yens to build an experiment for top observation and expected Nobel prize...


## Carter-Sanda idea



In 1980 nobody could think of golden mode (J/ K $K_{S}^{0}$ ). But Carter \& Sanda realized that two succeeding CKM-favored W emitions may result in (almost, up to s-d replacement) same quark configuration. s-d difference is hidden in $K_{S}^{0}$. Thus, both $B^{0}$ and $\bar{B}^{0}$ decay into the indistinguishable final state (even if intermediate states $D^{0} / \bar{D}^{0}$ are different). They estimated the CP violation effect may be as large as $10 \%$ (obviously, they pulled the effect up), but the Nature is very generous: in reality the effect is $\sim 100 \%$.

## How to study CP violation in B mesons

- Sanda \& Carter (1980): consider a final state $f$ common for both $B^{0}$ and $\bar{B}^{0}$ :

$$
B^{0} \rightarrow f_{\text {common }} \leftarrow \bar{B}^{0}
$$

- We arrive at decay rate asymmetry for the $B^{0}(t=0)$ and $\bar{B}^{0}(\mathrm{t}=0)$ because of interference of two amplitudes with different weak phases

$$
B^{0} \rightarrow f \leftarrow \bar{B}^{0} \leftarrow B^{0} \quad \operatorname{Br}\left(B^{0} \rightarrow f\right) \neq \operatorname{Br}\left(\bar{B}^{0} \rightarrow f\right)
$$

- The idea was hopeless, but it is ridiculous that it was successfully implemented in 20 years (while experiments to realize it began to be built just 10 years later). Sanda \& Carter overestimated the effect as much as they could (by the standards of 1980), but it turned out that the effect is much greater.
- It's funny that the tunnels of those accelerators for the discovery of the top quark (which was not discovered on them) served to create B-factories...


## 1980-1989

- From a crazy idea to realistic scenario:
- B-mesons had been discovered
- Large lifetime
- There are flavour blind modes, e.g. $J / \psi K_{S}^{0}$, which is in addition free of theoretical uncertainties -- "golden mode"
- $B^{0} \bar{B}^{0}$ mixing is large: this is not only good for Sanda-Karter idea realization, but also kills an idea to find top quark at $e^{+} e^{-}$ colliders: many built already accelerator tunnels cleared for new tasks (PEP at SLAC, PETRA at DESY, TRISTAN at KEK

WHAT HAS LED TO THE INTENSE INTEREST IN CP VIOLATION IN B?

- ARGUS \& CLEO HAVE MEASURED LARGE MIXING IN $\boldsymbol{B}^{0} / \bar{B}^{0}$ SYSTEM
- B LIFETIME IS LONG ( $\gtrsim 1 \mathrm{psec}$ )
- SILICON VERTEX METHODS REPRESENT A NEW LEVEL OF DETACHED VERTEX PRECISION

MARKII DELPMI

PROSPECT OF MEASURING CP IN B MESON SYSTEM LOOKS MUCH BRIGHTER

- THIS WOULD BE THE FIRST OBSERVATION OF CP VIOLATION OUTSIDE OF THE $K^{0}$ SYSTEM
- SUCH MEASUREMENTS WOULD CONSTRAIN THE STANDARD MODEL IN A VERY STRINGENT MANNER




## How to measure CPV at $\mathbf{e}^{+} \mathbf{e}^{-}$collider?

The source of B mesons is the $\Upsilon(4 \mathrm{~S})$, which has $J^{P C}=1^{--}$.
The $r(4 \mathrm{~S})$ decays to two bosons with $J^{P}=0^{-}$.
Quantum Mechanics (application of the Einstein-Rosen-Podolsky Effect) tells us that for a C = -1 initial state $(\mathrm{Y}(4 \mathrm{~S}))$ the rate asymmetry:

$$
A=\frac{N_{\left(B_{1} \rightarrow f_{C P}\right)\left(\bar{B}_{2} \rightarrow \bar{f}_{f}\right)}-N_{\left(B_{1} \rightarrow f_{C P}\right)\left(B_{2} \rightarrow f_{f l}\right)}}{N_{\left(B_{1} \rightarrow f_{C P}\right)\left(\bar{B}_{2} \rightarrow \bar{f}_{f l}\right)}+N_{\left(B_{1} \rightarrow f_{C P}\right)\left(B_{2} \rightarrow f_{f l}\right)}}=0
$$

However, if we measure the time dependence of A we find:

$$
A\left(t_{1}, t_{2}\right)=\frac{N\left(t_{1}, t_{2}\right)_{\left(B_{1} \rightarrow f_{C P}\right)\left(\bar{B}_{2} \rightarrow \bar{f}_{f l}\right)}-N\left(t_{1}, t_{2}\right)_{\left(B_{1} \rightarrow f_{C P}\right)\left(B_{2} \rightarrow f_{f l}\right)}}{N\left(t_{1}, t_{2}\right)_{\left(B_{1} \rightarrow f_{C P}\right)\left(\bar{B}_{2} \rightarrow \bar{f}_{f l}\right)}+N\left(t_{1}, t_{2}\right)_{\left(B_{1} \rightarrow f_{C P}\right)\left(B_{2} \rightarrow f_{f l}\right)}} \propto \sin 2 \phi_{C P}
$$

Need to measure the time dependence of decays to "see" CP violation using the B's produced at the $r(4 \mathrm{~S})$.
B-meson's decay flight is only $20 \mu \mathrm{~m}$ in $\Upsilon(4 \mathrm{~S})$ rest frame. No chance to measure such small distance with modern detectors...

$$
\Rightarrow \text { this kills good idea? }
$$

> No! just requires new idea:

## Asymmetric $\mathbf{e}^{+} \mathbf{e}^{-}$collider

Impossible to reconstruct B-decay vertex because they are too slowly in $\Upsilon(4 \mathrm{~S})$ frame?

Let's make the $r(4 \mathrm{~S})$ to move fast in the laboratory frame, then B-mesons have a sizable path; we need that accelerating electrons and positrons have different energies, but the Energy of center of mass $=\mathrm{M}(\Upsilon(4 \mathrm{~S})), 2 \sqrt{ } \mathrm{E}_{+} \mathrm{E}_{-}=\mathrm{M}(\Upsilon(4 \mathrm{~S}))$

We can measure t-dependent asymmetry at $\Upsilon(4 \mathrm{~S})$ !

Asymmetric energies $\xrightarrow[e^{-}]{\text {in lab frame }} e^{+}$

Flavor-tag decay ( $B^{0}$ or $\bar{B}^{0}$ ?)


Pier Oddone (1987) proposed the idea of asymmetric B-factory

$B^{o}$ decay into $C P$ eigenstate

## Asymmetric energy $\mathbf{e}^{+} \mathbf{e}^{-}$collider

$a_{C P V}(\Delta t)=\frac{\Gamma_{\bar{B} \rightarrow \bar{f}}(\Delta t)-\Gamma_{B \rightarrow f}(\Delta t)}{\Gamma_{\bar{B} \rightarrow \tilde{f}}(\Delta t)+\Gamma_{B \rightarrow f}(\Delta t)}=$
$=S \sin \left(\Delta m_{d} \Delta t\right)-C \cos \left(\Delta m_{d} \Delta t\right)$

Proposed by P. Oddone for realization at SLAC;

The idea led to $\mathbf{2 1}$ conceptual design projects of asymmetric Bfactories throughout the world.

Two collider, PEP-II and KEKB, were ultimately built.

## Things Come Together January 1987

- Discussions with Ikaros Bigi and Tony Sanda
- "Crazy Asymmetric Idea" just what was needed for CP studies
- Could be done by modifying PEP
- Two rings: give high luminosity
- $\mathrm{Y}(4 \mathrm{~S})$ : gives high cross section and $\mathrm{B}^{\circ} \overline{\mathrm{B}}^{\circ}$ in coherent state
- Asymmetry: separated vertices give time evolution



## Asymmetric B-factory

## TABLE 1.

Future $b \bar{b}$ factories and sweat shops. None of the luminosities shown in the Table have been achieved. Factors of two difference in luminosity are not significant.

| $\begin{aligned} & E_{C M} \\ & G e V \end{aligned}$ | Clasa | $E_{1} \times E_{2}$ $G e V \times G e V$ | ${ }_{4}$ | $\begin{gathered} \text { Peak } L_{\text {proposed }} \\ \mathrm{cm}^{-2} \mathrm{sec}^{-1} \end{gathered}$ | bs events/yr $10^{7} \mathrm{sec}$ 0 peak L | References |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| r(4S) | CM RING cm linear BOOSTED LINEAR boosted RING | $\begin{gathered} 5 \times 5 \\ 5 \times 5 \\ 2 \times 12.5 \\ 2 \times 12.5 \end{gathered}$ | 1 nb | $\begin{aligned} & 5 \times 10^{32} \\ & 10^{33} \\ & 5 \times 10^{32} \\ & 8 \times 10^{33} \end{aligned}$ | $\begin{gathered} 5 \cdot 10^{8} \\ 10^{7} \\ 5 \cdot 10^{6} \\ 5 \cdot 10^{6} \end{gathered}$ | SIN Proposal ${ }^{1}$ Amaldi \& Coignet ${ }^{2}$ Sesoler \& Wurtele ${ }^{3}$ Oddone ${ }^{4}$ |
| $\begin{array}{\|c} \text { Continum } \\ 20 \mathrm{GeV} \end{array}$ | ling |  | 0.1 nb | $5 \times 10^{202}$ <br> $10^{96}$ | $\begin{gathered} 5 \cdot 10^{8} \\ 10^{7} \end{gathered}$ | Bloom Amaidi \& Coignet ${ }^{2}$ |
| $z^{\circ}$ | $\begin{array}{\|l} \text { LiNEAR SLC } \\ \text { LLEP } \\ \text { RING } \\ \text { IMACINARY } \end{array}$ | $\begin{aligned} & 45 \times 45 \\ & 45 \times 45 \\ & 45 \times 45 \end{aligned}$ | 5 nb | $\begin{aligned} & 5 \times 10^{30} \\ & 2 \times 10^{31} \\ & 5 \times 10^{33} \end{aligned}$ | $\begin{gathered} 2.5 \cdot 10^{5} \\ 8 \cdot 10^{5} \\ 2.5 \cdot 10^{8} \end{gathered}$ | SLC Study ${ }^{\circ}$ LEP Study ${ }^{7}$ |



DETECTOR CONSIDERATIONS
P. Oddone

Lawrence Berkeley Laboratory

1 INTRODUCTION
This short note is drawn in large part from the joint deliberations of the detector and physics groups at this workshop. There were many "full time" and "part time" members, among them C. Adolphsen, P. Avery, I. Bigi, E. Bloom, C. Buchanan, G. Coignet, H. Harari, W. Hofmann, N. Lockyer,
I. Peruzzi, M. Piccolo, T. Sanda, P. Schlein, A. Soni, D. Stork, S. Weseler,
H. Yamamoto, and T. Ypsilantis. In our deliberations we tried to under-

## From Sanda's memories: "I went to KEK. <br> People said that Oddone's idea is crazy and that the beam will blow up!

## What's required to discover CPV at $\mathbf{e}^{+} \mathbf{e}^{-}$collider?

Produce B mesons! Need accelerator...
it's not enough...
well, produce moving B-mesons, thus asymmetric energy accelerator still not enough...

Produce a huge number of B mesons!
Need asymmetric accelerator with record luminosity!
Reconstruct B mesons, tag the flavor and measure vertices

> more required...

Reconstruct B mesons with maximum efficiency in all possible decays
Correctly determine the flavor of the second B-meson in the event
Precisely reconstruct two decay vertices


