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6 Neutrino refration.

It has been noted by Wolfenstein

a

that neutrino osillations in a medium are a�eted by

interations even if the thikness of the medium is negligible in omparison with the neutrino

mean free path.

Let us forget for the moment about the inelasti ollisions and onsider the simplest ase of a

ultrarelativisti neutrino whih moves in an external (e�etive) potential W formed by the

matter bakground. If the neutrino momentum in vauum was p then its energy was

≃ p = |p|. When the neutrino enters into the medium, its energy beomes E = p+W . Let

us now introdue the index of refration n = p/E whih is a positive value in the absene of

inelasti ollisions. Therefore

W = (1 − n)E ≃ (1 − n)p. (18)

In the last step, we took into aount that neutrino interation with matter is very weak,

|W | ≪ E, and thus E ≃ p is a good approximation.

The natural generalization of Eq. (13) for the time evolution of neutrino �avor states in

matter then follows from this simple onsideration and the quantum-mehanial

orrespondene priniple.

a

L. Wolfenstein, Phys. Rev. D 17 (1978) 2369.
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This is the famous Wolfenstein equation:

i
d

dt
|ν(t)〉

f
=
[
VH0V† + W(t)

]
|ν(t)〉

f
, (19)

where

W(t) = diag

(
1 − nνe

, 1 − nνµ
, 1 − nντ

, . . .
)
p (20)

is the interation Hamiltonian.

It will be useful for the following to introdue the time-evolution operator for the �avor states

de�ned by

|ν(t)〉
f

= S(t)|ν(0)〉
f
.

Taking into aount that |ν(t)〉
f

must satisfy Eq. (19) for any initial ondition

|ν(t = 0)〉
f

= |ν(0)〉
f

, the Wolfenstein equation an be immediately rewritten in terms of

the evolution operator:

iṠ(t) =
[
VH0V† + W(t)

]
S(t), S(0) = 1. (21)

This equation (or its equivalent (19)) annot be solved analytially in the general ase of a

medium with a varying (along the neutrino pass) density. But for a medium with a slowly

(adiabatially) varying density distribution the approximate solution an be obtained by a

diagonalization of the e�etive Hamiltonian. Below we will onsider this method for a rather

general 2-�avor ase but now let us illustrate (without derivation) the simplest situation with

a matter of onstant density.
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6.1 Matter of onstant density.

In the 2-�avor ase, the transition probability is given by the formula very similar to that for vauum:

Pαα′ (L) =
1

2
sin2 2θ

m

[
1− cos

(
2πL

L

m

)]
,

L

m

= L

v

[
1− 2κ (L

v

/L0) cos 2θ + (L

v

/L0)2
]−1/2

.

The L

m

is alled the osillation length in matter and is de�ned through the following quantities:

L

v

≡ L23 =
4πE

∆m2
, L0 =

√
2πA

GFNAZρ
≈ 2R⊕

(
A

2Z

)(
2.5 g/m

3

ρ

)
,

κ = sign

(
m2

3 −m2
2

)
, ∆m2 =

∣∣m2
3 −m2

2

∣∣ .

The parameter θ

m

is alled the mixing angle in matter and is given by

sin 2θ

m

= sin 2θ
(
L

m

L
v

)
,

cos 2θ

m

=
(

cos 2θ − κLv

L0

)(
L

m

L

v

)
.

The solution for antineutrinos is the same but with the replaement

κ 7−→ −κ.

The loseness of the value of L0 to the Earth's diameter is even more surprising than that for L

v

.

The matter e�ets are therefore important for atmospheri neutrinos.
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7 Propagation of high-energy mixed neutrinos through

matter.

�The matter doesn't matter�

Linoln Wolfenstein, leture given at 28th

SLAC Summer Institute on Partile Physis

�Neutrinos from the Lab, the Sun, and the

Cosmos�, Stanford, CA, Aug. 14-25, 2000.

When neutrinos propagate through vauum there is a phase hange exp
(
−im2

i t/2pν

)
. For two

mixed �avors there is a resulting osillation with length

L

va

=
4πEν

∆m2
≈ D⊕

(
Eν

10 GeV

)(
0.002 eV

2

∆m2

)
.

In matter there is an additional phase hange due to refration assoiated with forward sattering

exp [ipν(Ren− 1)t].

The harateristi length (for a normal medium) is

L

ref

=

√
2A

GFNAZρ
≈ D⊕

(
A

2Z

)(
2.5 g/m

2

ρ

)
.

It is generally believed that the imaginary part of the index of refration n whih desribes the

neutrino absorption due to inelasti interations does not a�et the osillation probabilities or at the

least inelasti interations an be someway deoupled from osillations.
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The onventional arguments are

• Ren− 1 ∝ GF while Imn ∝ G2
F ;

• Only ∆n may a�et the osillations and ∆Imn is all the more negligible.

It will be shown that these arguments do not work for su�iently high neutrino energies and/or for

thik media =⇒ in general absorption annot be deoupled from refration and mixing.

a

By using

another ant phrase of Wolfenstein, one an say that

�In some irumstanes the matter ould matter.�

7.1 Generalized MSW equation.

Let

fναA(0) be the amplitude for the να zero-angle sattering from partile A of the matter

bakground (A = e, p, n, . . .),

ρ(t) be the matter density (in g/m

3

),

YA(t) be the number of partiles A per amu in the point t of the medium, and

N0 = 6.02214199 × 1023

m

−3

be the referene partile number density (numerially equal to

Avogadro's number).

Then the index of refration of να for small |n− 1| (for normal media |n− 1|≪ 1) is given by

nα(t) = 1 +
2πN0ρ(t)

p2
ν

∑

A

YA(t)fναA(0),

where pν is the neutrino momentum.

apν Imn ∝ σtot (pν) grows fast with energy while pν (Ren− 1) is a onstant or dereasing funtion of Eν .
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Sine the amplitude fναA(0) is in general a omplex number, the index of refration is also omplex.

Its real part is responsible for neutrino refration while the imaginary part � for absorption. From the

optial theorem of quantum mehanis we have

Im [fναA(0)] =
pν

4π
σtotναA (pν).

This implies that

pν Im [nα(t)] =
1

2
N0ρ(t)

∑

A

YA(t)σtotναA (pν) =
1

2Λα (pν , t)
,

where

Λα (pν , t) =
1

Σtot

α (pν , t)
=
λtota (pν , t)

ρ(t)
.

is the mean free path [in m℄ of να in the point t of the medium. Sine the neutrino momentum, pν ,

is an extrinsi variable in Eq. (22), we will sometimes omit this argument to simplify formulas.

The generalized MSW equation for the time-evolution operator

S(t) =

(
Sαα(t) Sαβ(t)

Sβα(t) Sββ(t)

)

of two mixed stable neutrino �avors να and νβ propagating through an absorbing medium an be

written as

i
d

dt
S(t) =

[
VH0V

T + W(t)
]

S(t), (S(0) = 1) . (22)
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Here

V=

(
cos θ sin θ

− sin θ cos θ

)

is the vauum mixing matrix (0 ≤ θ ≤ π/2),
H0=

(
E1 0

0 E2

)

is the vauum Hamiltonian for ν mass eigenstates,

Ei=
√
p2
ν +m2

i ≃ pν +m2
i /2pν is the energy of the νi eigenstate,

W(t)= −pν
(
nα(t) − 1 0

0 nβ(t) − 1

)

is the interation Hamiltonian.

7.2 Master equation.

It is useful to transform MSW equation into the one with a traeless Hamiltonian. For this

purpose we de�ne the matrix

S̃(t) = exp

{
i

2

∫ t

0
Tr [H0 + W(t′)] dt′

}
S(t).

The master equation (ME) for this matrix then is

i
d

dt
S̃(t) = H(t)S̃(t), S̃(0) = 1. (23)
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The e�etive Hamiltonian is de�ned by

H(t) =

(
q(t) − ∆c ∆s

∆s −q(t) + ∆c

)
,

∆c = ∆ cos 2θ, ∆s = ∆ sin 2θ, ∆ =
m2

2 −m2
1

4pν
,

q(t) = qR(t) + iqI(t) =
1

2
pν [nβ(t) − nα(t)].

The Hamiltonian for antineutrinos is of the same form as H(t) but

Re [fναA(0)] = −Re [fναA(0)] and Im [fναA(0)] 6= Im [fναA(0)].

The neutrino osillation probabilities are

P [να(0) → να′(t)] ≡ Pαα′(t) = |Sα′α(t)|2 = A(t)
∣∣∣S̃α′α(t)

∣∣∣
2

, (24)

where

A(t) = exp

[
−
∫ t

0

dt′

Λ(t′)

]
,

1

Λ(t)
=

1

2

[
1

Λα(t)
+

1

Λβ(t)

]
.

Owing to the omplex potential q, the Hamiltonian H(t) is non-Hermitian and the new

evolution operator S̃(t) is nonunitary. As a result, there are no onventional relations between

Pαα′(t).
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Sine

qI(t) =
1

4

[
1

Λβ(t)
− 1

Λα(t)

]
,

the matrix H(t) beomes Hermitian when Λα = Λβ. If this is the ase at any t, the ME

redues to the standard MSW equation and inelasti sattering results in the ommon

exponential attenuation of the probabilities. From here, we shall onsider the more general

and more interesting ase, when Λα 6= Λβ.

7.3 Examples.

να − νs

This is the extreme example. Sine Λs = ∞, we have Λ = 2Λα and qI = −1/4Λα. So qI 6= 0

at any energy. Even without solving the evolution equation, one an expet the penetrability

of ative neutrinos to be essentially modi�ed in this ase beause, roughly speaking, they

spend a ertain part of life in the sterile state. In other words, sterile neutrinos �tow� their

ative ompanions through the medium as a tugboat. On the other hand, the ative neutrinos

�retard� the sterile ones, like a bulky barge retards its tugboat. As a result, the sterile

neutrinos undergo some absorption.
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νe,µ − ντ

Essentially at all energies, σCCνe,µN
> σCCντN

. This is beause of large value of the τ lepton

mass, mτ , whih leads to several onsequenes:

1. high neutrino energy threshold for τ prodution;

2. sharp shrinkage of the phase spaes for CC ντN reations;

3. kinemati orretion fators (∝ m2
τ ) to the nuleon struture funtions (the

orresponding strutures are negligible for e prodution and small for µ prodution).

The neutral urrent ontributions are aneled out from qI . Thus, in the ontext of the

master equation, ντ an be treated as (almost) sterile within the energy range for whih

σCCνe,µN
≫ σCCντN

(see Figures in pp. 109�110).

νe − να

A similar situation, while in quite a di�erent and narrow energy range, holds in the ase of

mixing of νe with some other �avor. This is a partiular ase for a normal C asymmetri

medium, beause of the W boson resonane formed in the neighborhood of

Eres

ν = m2
W /2me ≈ 6.33 PeV through the reations

νee
− → W− → hadrons and νee

− → W− → νℓℓ
− (ℓ = e, µ, τ).

Let's remind that σtotνee
≈ 250 σtotνeN

just at the resonane peak.
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7.4 Total ross setions.

Aording to Albright and Jarlskog

a

dσCCν, ν
dxdy

=
G2
FmNEν
π

(A1F1 + A2F2 ± A3F3+A4F4 +A5F5 ),

where Fi = Fi(x,Q
2) are the nuleon struture funtions and Ai are the kinemati fators

i = 1, . . . , 5). These fators were alulated by many authors

b

and the most aurate

formulas were given by Pashos and Yu:

A1 = xy2 +
m2
l y

2mNEν
, A2 = 1 − y − mN

2Eν
xy − m2

l

4E2
ν

, A3 = xy
(

1 − y

2

)
− m2

l y

4mNEν
,

A4 =
m2
l

2mNEν

(
xy +

m2
l

2mNEν

)
, A5 = − m2

l

2mNEν
.

The ontributions proportional to m2
ℓ must vanish as Eν ≫ mℓ. However they remain

surprisingly important even at very high energies.

a

C. H. Albright and C. Jarlskog, Nul. Phys. B 84 (1975) 467�492; see also I. Ju, Phys. Rev. D 8 (1973)

3103�3109 and V. D. Barger et al., Phys. Rev. D 16 (1977) 2141�2157.

b

See previous footnote and also the more reent papers: S. Dutta, R. Gandhi, and B. Mukhopadhyaya, Eur.

Phys. J. C 18 (2000) 405�416, hep-ph/9905475; N. I. Starkov, J. Phys. G 27 (2001) L81�L85; E. A. Pashos

and J. Y. Yu, Phys. Rev. D 65 (2002) 033002, hep-ph/0107261.
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7.5 Indies of refration.

For Eν ≪ min

(
m2
W,Z/2mA

)

and for an eletroneutral nonpolarized old medium, the qR is

energy independent. In the leading orders of the standard eletroweak theory it is

qR =





1
2V0Ypρ for α = e and β = µ or τ ,

− 1
2aτV0 (Yp + bτYn) ρ for α = µ and β = τ ,

1
2V0

(
Yp − 1

2Yn
)
ρ for α = e and β = s,

1
4V0Ynρ for α = µ or τ and β = s,

where

V0 =
√

2GFN0 ≃ 7.63 × 10−14

eV

(
L0 =

2π

V0
≃ 1.62 × 104

km ∼ D⊕

)
,

aτ =
3αrτ [ln(1/rτ ) − 1]

4π sin2 θW
≃ 2.44 × 10−5,

bτ =
ln(1/rτ ) − 2/3

ln(1/rτ ) − 1
≃ 1.05,

α is the �ne-struture onstant, θW is the weak-mixing angle and rτ = (mτ/mW )2

.
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Notes:

• For an isosalar medium the |qR| is of the same order of magnitude for any pair of �avors but

νµ − ντ .

• For an isosalar medium q
(νµ−ντ )
R /q

(νe−νµ)
R ≈ −5× 10−5

.

• For ertain regions of a neutron-rih medium the value of q
(νe−νs)
R may beome vanishingly

small. In this ase, the one-loop radiative orretions must be taken into aount.

• For very high energies the qR have to be orreted for the gauge boson propagators and

strong-interation e�ets.

One an expet |qR| to be either an energy-independent or dereasing funtion for any pair of mixed

neutrino �avors. On the other hand, there are several ases of muh urrent interest when |qI | either

inreases with energy without bound (mixing between ative and sterile neutrino states) or has a

broad or sharp maximum (as for νµ − ντ or νe − νµ mixings, respetively).

Numerial estimations suggest that for every of these ases there is an energy range in whih qR and

qI are omparable in magnitude. Sine qR ∝ ρ and qI ∝ and are dependent upon the omposition of

the medium (YA) there may exist some more spei� situations, when

|qR| ∼ |qI | ∼ |∆|

or even

|qR| ∼ |∆c| and |qI | ∼ |∆s| .

If this is the ase, the refration, absorption and mixing beome interestingly superimposed.
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7.6 Eigenproblem and mixing matrix in matter.

7.6.1 Eigenvalues.

The matrix H(t) has two omplex instantaneous eigenvalues, ε(t) and −ε(t), with
ε = εR + iεI satisfying the harateristi equation

ε2 = (q − q+) (q − q−) ,

where

q± = ∆c ± i∆s = ∆e±2iθ.

The solution is

ε2
R =

1

2

(
ε2

0 − q2
I

)
+

1

2

√
(ε2

0 − q2
I )

2
+ 4q2

I (ε2
0 − ∆2

s),

εI =
qI (qR − ∆c)

εR
(provided qR 6= ∆c) ,

with

ε0 =
√

∆2 − 2∆cqR + q2
R ≥ |∆s|, sign (εR)

def

= sign(∆) ≡ ζ.

(At that hoie ε = ∆ for vauum and ε = ζε0 if qI = 0.)
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In the viinity of the MSW resonane, qR = qR(t⋆) = ∆c

lim
qR→∆c±0

εR= ∆s

√
max (1 − ∆2

I/∆
2
s, 0),

lim
qR→∆c±0

εI= ±ζ∆I

√
max (1 − ∆2

s/∆
2
I , 0),

where ∆I = qI(t⋆). Therefore the resonane value of |εR| (whih is inversely proportional to

the neutrino osillation length in matter) is always smaller than the onventional MSW value

|∆s| and vanishes if ∆2
I < ∆2

s (εI remains �nite in this ase). In neutrino transition through

the region of resonane density ρ = ρ(t⋆), εI undergoes disontinuous jump while εR remains

ontinuous. The orresponding uts in the q plane are plaed outside the irle |q| ≤ |∆|. If

∆2
I > ∆2

s, the imaginary part of ε vanishes while the real part remains �nite.

A distintive feature of the harateristi equation is the existene of two mutually onjugate

�super-resonane� points q± in whih ε vanishes giving rise to the total degeneray of the

levels of the system (impossible in the �standard MSW� solution). Certainly, the behavior of

the system in the viinity of these points must be dramatially di�erent from the onventional

pattern.

The �super-resonane� onditions are physially realizable for various meaningful

mixing senarios.
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Some useful relations:

ε2
R =

2q2
I

(
ε2

0 − ∆2
s

)
√

(ε2
0 − q2

I )
2

+ 4q2
I (ε2

0 − ∆2
s) − ε2

0 + q2
I

,

εI =

√
(ε2

0 − q2
I )

2
+ 4q2

I (ε2
0 − ∆2

s) − ε2
0 + q2

I

2qI (qR − ∆c)
,

∂εR
∂qR

=
∂εI
∂qI

=
qIεI + (qR − ∆c) εR

ε2
R + ε2

I

,

∂εI
∂qR

= −∂εR
∂qI

=
qIεR − (qR − ∆c) εI

ε2
R + ε2

I

,

Re

[
q(t) − ∆c

ε

]
=

(
qR − ∆c

εR

)(
ε2
R + q2

I

ε2
R + ε2

I

)
,

Im

[
q(t) − ∆c

ε

]
=

(
qI
εR

)(
ε2
R − ε2

0 + ∆2
s

ε2
R + ε2

I

)
,

(qR − ∆c)
2

= ε2
0 − ∆2

s.

qR

qI

− |∆  |s

   |∆  |s

∆c

2θ

|∆|
0

Zeros and uts of ε in the q plane for ∆c >

0. The uts are plaed outside the irle

|q| ≤ |∆| parallel to axis qR = 0. The MSW

resonane point is (∆c, 0) and the two �super-

resonane� points are (∆c,±∆s).
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7.6.2 Eigenstates.

In order to simplify the solution to the eigenstate problem we'll assume that the phase

trajetory q = q(t) does not ross the points q± at any t. In non-Hermitian quantum

dynamis one has to onsider the two pairs of instantaneous eigenvetors |Ψ±〉 and |Ψ±〉

whih obey the relations

H|Ψ±〉 = ± ε|Ψ±〉 and H†|Ψ±〉 = ± ε∗|Ψ±〉. (25)

and (for q 6= q±) form a omplete biorthogonal and biorthonormal set,

〈Ψ±|Ψ±〉 = 1, 〈Ψ±|Ψ∓〉 = 0, |Ψ+〉〈Ψ+| + |Ψ−〉〈Ψ−| = 1.

Therefore, the eigenvetors are de�ned up to a gauge transformation

|Ψ±〉 7→ eif± |Ψ±〉, |Ψ±〉 7→ e−if∗
± |Ψ±〉,

with arbitrary omplex funtions f±(t) suh that Im (f±) vanish as q = 0.a Thus it is

su�ient to �nd any partiular solution of Eqs. (25). Taking into aount that H† = H∗

, we

may set |Ψ±〉 = |Ψ∗
±〉 and hene the eigenvetors an be found from the identity

H = ε|Ψ+〉〈Ψ∗
+| − ε|Ψ−〉〈Ψ∗

−|.

a

For our aims, the lass of the gauge funtions may be restrited without loss of generality by the ondition

f±|q=0 = 0.
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Setting |Ψ±〉 = (v±,±v∓)
T

we arrive at the equations

v2
± =

ε± (q − ∆c)

2ε
, v+v− =

∆s

2ε
,

a partiular solution of whih an be written as

v+=

√∣∣∣∣
ε+ q − ∆c

2ε

∣∣∣∣ e
i(ϕ−ψ)/2,

v−= ζ

√∣∣∣∣
ε− q + ∆c

2ε

∣∣∣∣ e
i(−ϕ−ψ)/2.

where

ϕ = arg(ε+ q − ∆c) = − arg(ε− q + ∆c) = arctan

(
qI
εR

)
,

ψ = arg(ε) = arctan

(
εI
εR

)
.

We have �xed the remaining gauge ambiguity by a omparison with the vauum ase.
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7.6.3 Mixing angle in matter.

It may be sometimes useful to de�ne the omplex mixing angle in matter Θ = ΘR + iΘI by the

relations

sinΘ = v+ and cosΘ = v−

or, equivalently,

sin 2Θ =
∆s

ε
, cos 2Θ =

∆c − q
ε

,

The real and imaginary parts of Θ are found to be

Re(Θ)≡ ΘR =
1

2
arctan

[
(qI −∆s) εR − (qR −∆c) εI

(qR −∆c) εR + (qI −∆s) εI

]
,

Im(Θ)≡ ΘI =
1

4
ln

[
ε2

R + ε2
I

(qR −∆c)2 + (qI −∆s)2

]
.

cosΘ= cosΘR coshΘI − i sinΘR sinhΘI ,

sinΘ= sinΘR coshΘI + i cosΘR sinhΘI .

Having regard to the presription for the sign of εR, one an verify that Θ = θ if q = 0 (vauum

ase) and Θ = 0 if ∆s = 0 (no mixing or m2
1 = m2

2). It is also lear that Θ beomes the standard

MSW mixing angle with Im(Θ) = 0 when qI = 0 (Λα = Λβ).
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7.6.4 Mixing matrix in matter.

In order to build up the solution to ME for the

nondegenerated ase one has to diagonalize the

Hamiltonian. Generally a non-Hermitian matrix

annot be diagonalized by a single unitary

transformation. But in our simple ase this

an be done by a omplex orthogonal matrix

(extended mixing matrix in matter)

Uf = U exp(if),

where f = diag (f−, f+) and

U = (|Ψ−〉, |Ψ+〉) =

(
v− v+

−v+ v−

)

=

(
cosΘ sinΘ

− sinΘ cosΘ

)
.

Properties of U:

U
T

HU = diag (−ε, ε),
U

T
U = 1, U|q=0 = V.

From CE it follows that

∂ε

∂q
=

(q −∆c)

ε

and thus

∂v±
∂q

= ±∆2
sv∓

2ε2
.

We therefore have

iUT
U̇ = −Ω

(
0 −i
i 0

)
= −Ωσ

2
,

Ω =
q̇∆s

2ε2
=
i

4

d

dt
ln

(
q − q+

q − q−

)
.

Properties of Uf :

U
T
f HUf = diag (−ε, ε),

U
T
f Uf = 1, Uf |q=0 = V,

iUT
f U̇f = −Ωe−if σ

2
eif − ḟ .
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7.7 Adiabati solution.

Formal solution to ME in the most general form:

S̃(t) = Uf (t) exp [−iΦ(t)] Xf (t)UT
f (0). (26)

Here Φ(t) = diag (−Φ(t), Φ(t)) and Φ(t) = ΦR(t) + iΦI(t) is the omplex dynamial phase,

de�ned by

ΦR(t) =

∫ t

0

εR(t′)dt′, ΦI(t) =

∫ t

0

εI(t
′)dt′,

and Xf (t) must satisfy the equation

iẊf (t) =
[
Ω(t)e−if(t)F(t)eif(t) + ḟ(t)

]
Xf (t), Xf (0) = 1,

where

F(t) = eiΦ(t)σ2e
−iΦ(t) =

(
0 −ie−2iΦ(t)

ie2iΦ(t) 0

)
.

It an be proved now that the right side of Eq. (26) is gauge-invariant i.e. it does not depend

on the unphysial omplex phases f±(t). This ruial fat is losely related to the absene of

the Abelian topologial phases in the system under onsideration.
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Finally, we an put f± = 0 in Eq. (26) and the result is

S̃(t) = U(t) exp [−iΦ(t)] X(t)UT (0), (27a)

iẊ(t) = Ω(t)F(t)X(t), X(0) = 1. (27b)

These equations, being equivalent to the ME, have nevertheless a restrited range of pratial

usage on aount of poles and uts as well as deaying and inreasing exponents in the

�Hamiltonian� ΩF.

7.7.1 Adiabati theorem.

The adiabati theorem of Hermitian quantum mehanis an almost straightforwardly be extended to

ME under the requirements:

(a) the potential q is a su�iently smooth and slow funtion of t;

(b) the imaginary part of the dynamial phase is a bounded funtion i.e. limt→∞ |ΦI(t)| is �nite;

() the phase trajetory q = q(t) is plaed far from the singularities for any t.

The �rst requirement breaks down for a ondensed medium with a sharp boundary or layered

struture (like the Earth). If however the requirement (a) is valid inside eah layer (ti, ti+1), the

problem redues to Eqs. (27) by applying the rule

S̃(t) ≡ S̃(t, 0) = S̃ (t, tn) . . . S̃ (t2, t1) S̃ (t1, 0),

where S̃ (ti+1, ti) is the time-evolution operator for the i-th layer.
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The requirement (b) alone is not too restritive onsidering that for many astrophysial objets (like

stars, galati nulei, jets and so on) the density ρ exponentially disappears to the periphery and, on

the other hand, εI → 0 as ρ→ 0. In this instane, the funtion ΦI(t) must be t independent for

su�iently large t. But, in the ase of a steep density pro�le, the requirements (a) and (b) may be

inonsistent. The important ase of violation of the requirement () is the subjet of a speial study

whih is beyond the sope of this study.

It is interesting to note in this onnetion that, in the Hermitian ase, a general adiabati theorem has been

proved without the traditional gap ondition

a

.

a

J. E. Avron and A. Elgart, Commun. Math. Phys. 203 (1999) 445�467.
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7.7.2 The solution.

Presume that all neessary onditions do hold for 0 ≤ t ≤ T . Then, in the adiabati limit, we an put

Ω = 0 in Eq. (27b). Therefore X = 1 and Eq. (27a) yields

S̃αα(t)= v+(0)v+(t)e−iΦ(t) + v−(0)v−(t)eiΦ(t),

S̃αβ(t)= v−(0)v+(t)e−iΦ(t) − v+(0)v−(t)eiΦ(t),

S̃βα(t)= v+(0)v−(t)e−iΦ(t) − v−(0)v+(t)eiΦ(t),

S̃ββ(t)= v−(0)v−(t)e−iΦ(t) + v+(0)v+(t)eiΦ(t),

Taking into aount Eq. (24) we obtain the survival and transition probabilities:

Pαα(t) = A(t)
{[
I+

+ (t)eΦI(t) + I−− (t)e−ΦI(t)
]2 − I2(t) sin2 [ΦR(t)− ϕ+(t)]

}
,

Pαβ(t) = A(t)
{[
I−+ (t)eΦI(t) − I+

−(t)e−ΦI(t)
]2

+ I2(t) sin2 [ΦR(t)− ϕ−(t)]
}
,

Pβα(t) = A(t)
{[
I+
−(t)eΦI(t) − I−+ (t)e−ΦI(t)

]2
+ I2(t) sin2 [ΦR(t) + ϕ−(t)]

}
,

Pββ(t) = A(t)
{[
I−− (t)eΦI (t) + I+

+ (t)e−ΦI(t)
]2 − I2(t) sin2 [ΦR(t) + ϕ+(t)]

}
,

(28)

where we have denoted for ompatness (ς, ς ′ = ±)

Iς′

ς (t) = |vς(0)vς′ (t)|, ϕ±(t) =
ϕ(0) ± ϕ(t)

2
, I2(t) = 4I+

+ (t)I−− (t) = 4I−+ (t)I+
−(t) =

∆2
s

|ε(0)ε(t)|
.
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7.7.3 Limiting ases.

In the event that the onditions

∣∣∣∣
1

Λβ(t)
− 1

Λα(t)

∣∣∣∣ ≪ 4ε0(t) and t ≪ min [Λα(t), Λβ(t)]

are satis�ed for any t ∈ [0, T ], the formulas (28) redue to the standard MSW adiabati

solution

Pαα(t)= Pββ(t) =
1

2
[1 + J(t)] − I2

0 (t) sin2 [Φ0(t)],

Pαβ(t)= Pβα(t) =
1

2
[1 − J(t)] + I2

0 (t) sin2 [Φ0(t)],





(MSW)

where

J(t) =
∆2 − ∆c [qR(0) + qR(t)] + qR(0)qR(t)

ε0(0)ε0(t)
,

I2
0 (t) =

∆2
s

ε0(0)ε0(t)
, Φ0(t) =

∫ t

0

ε0(t′)dt′.

Needless to say either of the above onditions or both may be violated for su�iently high

neutrino energies and/or for thik media, resulting in radial di�erenes between the two

solutions. These di�erenes are of obvious interest to high-energy neutrino astrophysis.
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It is perhaps even more instrutive to examine the distintions between the general adiabati

solution (28) and its �lassial limit�

Pαα(t)= exp

[
−
∫ t

0

dt′

Λα(t′)

]
, Pαβ(t) = 0,

Pββ(t)= exp

[
−
∫ t

0

dt′

Λβ(t′)

]
, Pβα(t) = 0,





(∆s = 0)

whih takes plae either in the absene of mixing or for m2
1 = m2

2.

Note:

Considering that Ω ∝ ∆s, the lassial limit is the exat solution to the master equation (for

∆s = 0). Therefore it an be derived diretly from Eq. (23). To make ertain that the

adiabati solution has orret lassial limit, the following relations are useful:

lim
∆s→0

ε(t) = ζζR [q(t) − ∆c]

and

lim
∆s→0

|v±( t)|2 =
1

2
(ζζR ± 1),

where

ζR = sign [qR(t) − ∆c].

125



7.8 Matter of onstant density and omposition.

In this simple ase, the adiabati approximation beomes exat and thus free from the

above-mentioned oneptual di�ulties. For de�niteness sake we assume Λα < Λβ (and thus

qI < 0) from here. The opposite ase an be onsidered in a similar way. Let's denote

1

Λ±

=
1

2

(
1

Λα
+

1

Λβ

)
± ξ

2

(
1

Λα
− 1

Λβ

)
,

I2
± =

1

4

(
1 +

ε2
0 + q2

I − ∆2
s

ε2
R + ε2

I

)
± ξ

2

(
ε2
R + q2

I

ε2
R + ε2

I

)
,

L =
π

|εR| and ξ =

∣∣∣∣
qR − ∆c

εR

∣∣∣∣.

As is easy to see,

I±
± =




I± if sign (qR − ∆c) = +ζ,

I∓ if sign (qR − ∆c) = −ζ,

I−
+ = I+

− =
√
I+I− =

I

2
=

∣∣∣∣
∆s

2ε

∣∣∣∣

and sign(ϕ) = −ζ.
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By applying the above identities, the neutrino osillation probabilities an be written as

Pαα(t)=
(
I+e

−t/2Λ+ + I−e
−t/2Λ−

)2

− I2e−t/Λ sin2

(
πt

L
+ |ϕ|

)
,

Pββ(t)=
(
I−e

−t/2Λ+ + I+e
−t/2Λ−

)2

− I2e−t/Λ sin2

(
πt

L
− |ϕ|

)
,

Pαβ(t)= Pβα(t) =
1

4
I2
(
e−t/2Λ− − e−t/2Λ+

)2

+ I2e−t/Λ sin2

(
πt

L

)
.

The di�erene between the survival probabilities for να and νβ is

Pαα(t) − Pββ(t) = −ζRe

(
q − ∆c

ε

)(
e−t/2Λ− − e−t/2Λ+

)

+I2e−t/Λ sinϕ sin

(
2πt

L

)
.
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7.8.1 Case |q| & |∆s|.

Let's examine the ase when Λ+ and Λ− are vastly di�erent in magnitude. This will be true

when Λβ ≫ Λα and the fator ξ is not too small. The seond ondition holds if qR is away

from the MSW resonane value ∆c and the following dimensionless parameter

κ =
∆s

|q| ≈ 0.033 × sin 2θ

(
∆m2

10−3

eV

2

)(
100 GeV

Eν

)(
V0

|q|

)

is su�iently small. In fat we assume |κ| . 1 and impose no spei� restrition for the ratio

qR/qI . This spans several possibilities:

⋆ small ∆m2

,

⋆ small mixing angle,

⋆ high energy,

⋆ high matter density.

The last two possibilities are of speial interest beause the inequality |κ| . 1 may be ful�lled

for a wide range of the mixing parameters ∆m2

and θ by hanging Eν and/or ρ. In other

words, this ondition is by no means arti�ial or too restritive.
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After elementary while a bit tedious alulations we obtain

ξ = 1 − 1

2
κ

2 + O
(
κ

3
)
, I2 = κ

2 + O
(
κ

3
)
,

I+ = 1 + O
(
κ

2
)
, I− =

1

4
κ

2 + O
(
κ

3
)
;

Λ ≈ 2Λα, Λ+ ≈
(

1 +
κ

2

4

)
Λα ≈ Λα, Λ− ≈

(
4

κ2

)
Λα ≫ Λα.

Due to the wide spread among the length/time sales Λ±, Λ and L as well as among the

amplitudes I± and I, the regimes of neutrino osillations are quite diverse for di�erent ranges

of variable t.

With referene to Figures in pp. 130�133, one an see a regular gradation from slow (for

t . Λµ) to very fast (for t & Λµ) neutrino osillations followed by the asymptoti

nonosillatory behavior:

Pµµ(t) ≃ κ
4

16
e−t/Λ− ,

Pss(t) ≃ e−t/Λ− ,

Pµs(t) = Psµ(t) ≃ κ
2

4
e−t/Λ− .
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Survival and transition probabilities for νµ ↔ νs osillations (Eν = 250 GeV, ρ = 1 g/m

3

).
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Survival and transition probabilities for νµ ↔ νs osillations (Eν = 1000 GeV, ρ = 0.2 g/m

3

).
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Survival and transition probabilities for νµ ↔ νs osillations (Eν = 100 TeV, ρ = 10−3

g/m

3

).
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Survival and transition probabilities for νµ ↔ νs osillations (Eν = 100 TeV, ρ = 3× 10−4

g/m

3

).
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The mehanism under disussion may be released in the Thorne�




Zytkow objets (T




ZO) � binaries

with a neutron star submerged into a red supergiant ore. Figure shows an artisti view of how a

T




ZO ould be formed.

[See, e.g., URLs: 〈 http://astro�shki.net/universe/hv-2112-neveroyatnyj-obekt-torna-zhitkov/ 〉 and

〈 http://www.deifrandoastronomia.om.br/2017/01/uma-estrela-dentro-de-outra-onhea-hv.html〉.℄

The very bright red star HV2112 in the Small Magellani Cloud (see next slide) ould be a massive

supergiant-like star with a degenerate neutron ore (T




ZO). With its luminosity of over 105L⊙, it

ould also be a super asymptoti giant branh star (SAGB), a star with an oxygen/neon ore

supported by eletron degeneray and undergoing thermal pulses with third dredge up.
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Both T




ZO and SAGB stars are expeted to be rare. Calulations performed by Ch. A. Tout et al.

a

indiate that HV2112 is likely a genuine T




ZO. But a muh more likely explanation is that HV2112 is

an intermediate mass (∼ 5M⊙) AGB star; a new T




ZO andidate (HV11417) is reently suggested.

b

a

Ch. A. Tout, A. N.




Zytkow, R. P. Churh, & H. H. B. Lau, �HV2112, a Thorne�




Zytkow objet or a super

asymptoti giant branh star�, Mon. Not. Roy. Astron. So. 445 (2014) L36�L40, arXiv:1406.6064 [astro-ph.HE℄.

b

E. R. Beasor, B. Davies, I. Cabrera-Ziri, & G. Hurst , �A ritial re-evaluation of the Thorne�




Zytkow objet

andidate HV 2112�, arXiv:1806.07399 [astro-ph.SR℄.
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7.8.2 Degenerate ase.

The onsideration must be ompleted for the ase of degeneray. Due to the ondition

qI < 0, the density and omposition of the �degenerate environment� are �ne-tuned in suh a

way that

q = q−ζ = ∆c − i |∆s|.

The simplest way is in oming bak to the master equation. Indeed, in the limit of q = q−ζ ,

the Hamiltonian redues to

H = |∆s|
(

−i ζ

ζ i

)
≡ |∆s| hζ .

Considering that h2
ζ = 0, we promptly arrive at the solution of ME:

S̃(t) = 1 − it |∆s| hζ

and thus

Pαα(t) = (1 − |∆s| t)2
e−t/Λ,

Pββ(t) = (1 + |∆s| t)2
e−t/Λ,

Pαβ(t) = Pβα(t) = (∆st)
2
e−t/Λ.
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Sine 1/Λβ = 1/Λα − 4 |∆s|, the neessary ondition for the total degeneration is

4Λα |∆s| ≤ 1

and thus

1/Λ = 1/Λα − 2 |∆s| ≥ 2 |∆s|.

The equality only ours when νβ is sterile.

The degenerate solution must be ompared with the standard MSW solution

Pαα(t) = Pss(t) =
1

2
[1 + cos (2∆st)],

Pαs(t) = Psα(t) =
1

2
[1 − cos (2∆st)],





(MSW)

and with the lassial penetration oe�ient

exp (−t/Λα)

(with 1/Λα numerially equal to 4 |∆s|) relevant to the transport of unmixed ative neutrinos

through the same environment.
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oe�ient for unmixed να (dashed urve) are also shown.
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7.9 Conlusions.

We have onsidered, on the basis of the MSW evolution equation with omplex indies of

refration, the onjoint e�ets of neutrino mixing, refration and absorption on high-energy

neutrino propagation through matter. The adiabati solution with orret asymptotis in the

standard MSW and lassial limits has been derived. In the general ase the adiabati

behavior is very di�erent from the onventional limiting ases.

A noteworthy example is given by the ative-to-sterile neutrino mixing. It has been

demonstrated that, under proper onditions, the survival probability of ative neutrinos

propagating through a very thik medium of onstant density may beome many orders of

magnitude larger than it would be in the absene of mixing. The quantitative harateristis

of this phenomenon are highly responsive to hanges in density and omposition of the

medium as well as to neutrino energy and mixing parameters.

Considering a great variety of latent astrophysial soures of high-energy neutrinos, the e�et

may open a new window for observational neutrino astrophysis.
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