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5 Quantum-me
hani
al treatment.

5.1 Angels & hippopotami.

A

ording to the 
urrent theoreti
al understanding, the

neutrino �elds/states of de�nite �avor are superpositions of

the �elds/states with de�nite, generally di�erent masses [and

vi
e versa℄:

να =
∑

i

Vαiνi for neutrino �elds,

|να〉 =
∑

i

V ∗αi|νi〉 for neutrino states;

α = e, µ, τ , i = 1, 2, 3, . . .

Here Vαi are the elements of the Ponte
orvo-Maki-Nakagawa-

Sakata neutrino va
uum mixing matrix V.

This 
on
ept leads to the possibility of transitions between

di�erent �avor neutrinos, να ←→ νβ , phenomenon known

as neutrino �avor os
illations.
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Let us introdu
e two types of neutrino eigenstates:

• The �avor neutrino eigenstates whi
h 
an be written as a ve
tor

|ν〉
f

= (|νe〉, |νµ〉, |ντ 〉, . . .)T ≡ (|να〉)T

are de�ned as the states whi
h 
orrespond to the 
harge leptons α = e, µ, τ . The 
orresponden
e is

established through the 
harged 
urrent intera
tions of a
tive neutrinos and 
harged leptons.

Together with the standard νs, |ν〉
f

may in
lude also neutrino states allied with additional heavy 
harged

leptons, as well as the states not asso
iated with 
harge leptons, like sterile neutrinos, νs.

In general, the �avor states have no de�nite masses. Therefore, they 
an have either de�nite

momentum, or de�nite energy but not both.

• The neutrino mass eigenstates

|ν〉
m

= (|ν1〉, |ν2〉, |ν3〉, . . .)T ≡ (|νk〉)T

are, by de�nition, the states with the de�nite masses mk, k = 1, 2, 3, . . ..

Sin
e |να〉 and |νk〉 are not identi
al, they are related to ea
h other through a unitary transformation

|να〉 =
∑

k

V̂αk|νk〉 or |ν〉
f

= V̂|ν〉
m
,

where V̂ =‖ V̂αk ‖ is a unitary (in general, N×N) matrix.
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To �nd out the 
orresponden
e between V̂ and the PMNS mixing matrix V we 
an normalize the

�f � and �m� states by the following 
onditions

〈0|ναL(x)|να′〉 = δαα′

and 〈0|νkL(x)|νk′〉 = δkk′ .

From these 
onditions we obtain

∑

k

VαkV̂α′k = δαα′

and

∑

α

VαkV̂αk′ = δkk′ .

Therefore

V̂ ≡ V
†

and

|ν〉
f

= V
†|ν〉

m
⇐⇒ |ν〉

m
= V|ν〉

f
. (11)

The time evolution of a single mass eigenstate |νk〉 with momentum pν is trivial,

i
d

dt
|νk(t)〉 = Ek|νk(t)〉 =⇒ |νk(t)〉 = e−iEk(t−t0)|νk(t0)〉,

where Ek =
√
p2

ν +m2
k is the total energy in the state |νk〉. Now, assuming that all N states |νk〉

have the same momentum, one 
an write

i
d

dt
|ν(t)〉

m
= H0|ν(t)〉

m
, where H0 = diag (E1, E2, E3, . . .). (12)
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From Eqs. (11) and (12) we have

i
d

dt
|ν(t)〉

f
= V

†
H0V|ν(t)〉

f
. (13)

Solution to this equation is obvious:

|ν(t)〉
f

= V
†e−iH0(t−t0)

V |ν(t0)〉
f

= V
†

diag

(
e−iE1(t−t0), e−iE2(t−t0), . . .

)
V |ν(t0)〉

f
. (14)

Now we 
an derive the survival and transition probabilities

Pαβ(t− t0)= P [να(t0)→ νβ(t)]= |〈νβ(t)|να(t0)〉|2

=

∣∣∣
∑

k

VαkV
∗

βk exp [iEk(t− t0)]

∣∣∣
2

=
∑

jk

VαjVβk (VαkVβj)∗ exp [i(Ej − Ek)(t− t0)].

In the ultrarelativisti
 limit p2
ν ≫ m2

k, whi
h is undoubtedly valid for all interesting 
ir
umstan
es

(ex
ept reli
 neutrinos),

Ek =
√
p2

ν +m2
k ≈ pν +

m2
k

2pν
≈ Eν +

m2
k

2Eν
.
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Therefore in very good approximation

Pαβ(t− t0) =
∑

jk

VαjVβk (VαkVβj)∗ exp

[
i∆m2

jk(t− t0)

2Eν

]
.

As a rule, there is no way to measure t0 and t in the same experiment.

a

But it is usually possible to

measure the distan
e L between the sour
e and dete
tor. So we have to 
onne
t t− t0 with L. It is

easy to do in the standard ultrarelativisti
 approximation,

vk =
pν

Ek
≃ 1− m2

k

2E2
ν

= 1− 0.5× 10−14
(

mk

0.1 eV

)2 (1 MeV

Eν

)2

≃ 1,

from whi
h it almost evidently follows that t− t0 ≈ L. Finally we arrive at the following formula

Pαβ(L) =
∑

jk

VαjVβk (VαkVβj)∗ exp

(
2iπL

Ljk

)
, Ljk =

4πEν

∆m2
jk

, (15)

where Ljk (or more exa
tly |Ljk| = |Lkj |) are the so-
alled neutrino os
illation lengths.

It is straightforward to prove that the QM formula satis�es the probability 
onservation law:

∑

α

Pαβ(L) =
∑

β

Pαβ(L) = 1.

The range of appli
ability of the standard quantum-me
hani
al approa
h is limited but enough for

the interpretation of essentially all modern experiments with a

elerator, rea
tor, atmospheri
, solar,

and astrophysi
al neutrino beams.

a

Important ex
eptions will be dis
ussed in the spe
ial se
tion.
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5.2 Energy 
onservation.

Although the energy of the state with de�nite �avor, |να(L)〉 = |να(t)〉, is not de�ned, its mean

energy, 〈Eα(t)〉 = 〈να(t)|Ĥ|να(t)〉, is a well-de�ned and 
onserved quantity. Indeed,

〈Eα(t)〉 =
∑

ij

VαiV
∗

αj〈νi(p)|Ĥ|νj(p)〉 =
∑

ij

VαiV
∗

αj〈νi(p)|Ei|νj(p)〉 ≡ 〈Eα〉 = inv.

〈Eα〉 =
∑

i

|Vαi|2Ei ≃ p+
∑

i

|Vαi|2m
2
i

2p
, =⇒

∑

α

〈Eα〉 =
∑

i

Ei ≃ 3

(
p+

∑

i

m2
i

2p

)
.

Moreover, the mean energy of an arbitrary entangled state 
hara
terized by a 
ertain density matrix

ρ(t) is also 
onserved. Indeed, let the initial state have the form

ρ(0) =
∑

α

wα|να(0)〉〈να(0)|,

The mean energy of the mixed state at arbitrary time t is then written as

〈E(t)〉 = Tr

(
Ĥρ(t)

)
= Tr

(
Ĥe−iĤtρ(0)eiĤt

)

=
∑

α

wα

∑

ij

V ∗αiVαje
−i(Ei−Ej )tEi Tr|νi(p)〉〈νj(p)|

=
∑

α

wα

∑

i

|Vαi|2Ei = inv, =⇒ 〈E(t)〉 =
∑

α

wα〈Eα〉.

Naturally, 〈E(t)〉 = 〈Eα〉 for the pure initial state |να(0)〉 (when ρ(0) = |να(0)〉〈να(0)|).
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5.3 Simplest example: two-�avor os
illations.

Let's now 
onsider the simplest (toy) 2-�avor model, e.g., with i = 2, 3 and α = µ, τ (the most

favorable due to the SK and other underground experiments). The 2× 2 va
uum mixing matrix 
an

be parametrized (due to the unitarity) with a single parameter, θ (= θ23), the va
uum mixing angle,

V =

(
cos θ sin θ

− sin θ cos θ

)
, 0 ≤ θ ≤ π

2
.

In this model, Eq. (15) then be
omes very simple and

transparent:

Pµτ (L) = Pτµ(L) =
1

2
sin2 2θ

[
1− cos

(
2πL

L

v

)]
,

L

v

≡ L23 =
4πEν

∆m2
23

≈ 2R⊕

(
Eν

10 GeV

)(
0.002 eV

2

∆m2
23

)
.

Here R⊕ is the mean radius of Earth and 10 GeV is a

typi
al energy in the (very wide) atmospheri
 neutrino

spe
trum.

Sin
e Earth provides variable �baseline� [from about

15 km to about 12700 km℄, it is surprisingly suitable

for studying the atmospheri
 (as well as a

elerator

and rea
tor) neutrino os
illations in rather wide range

of the os
illation parameters.

https://universe-review.ca/R15-13-neutrino.htm
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2016

N
u

m
b

e
r 

o
f 
E

v
e

n
ts

Zenith angle and momentum distributions for atmospheri
 neutrino subsamples used for an analyses

by Super-Kamiokande to study subleading e�e
ts, preferen
es for mass hierar
hy and δ

CP

, as well as

sear
hes for astrophysi
al sour
es su
h as dark matter annihilation.

[From T. Kajita et al. (for the Super-Kamiokande Collaboration), �Establishing atmospheri
 neutrino os
illations with

Super-Kamiokande, �Nu
l. Phys. B 908 (2016) 14�29.℄
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The event spe
tra at MINOS from 10.71× 1020

POT FHC (νµ-dominated) mode, 3.36× 1020

POT

RHC (νµ-dominated) mode and 37.88 kt·yrs of atmospheri
 data. The data are shown 
ompared to

the predi
tion in absen
e of os
illations (grey lines) and to the best-�t predi
tion (red). The beam

histograms (top) also in
lude the NC ba
kground 
omponent (�lled grey) and the atmospheri


histograms (bottom) in
lude the 
osmi
-ray ba
kground 
ontribution �lled blue).

[From L. H. Whitehead (For the MINOS Collaboration), �Neutrino os
illations with MINOS and MINOS+,� Nu
l. Phys.

B 908 (2016) 130�150.℄
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5.4 Summary of the standard QM theory.

The standard assumptions are intuitively transparent and (almost) 
ommonly a

epted.

[1℄ The neutrino �avor states |να〉 asso
iated with the 
harged leptons α = e, µ, τ (that is having

de�nite lepton numbers) are not identi
al to the neutrino mass eigenstates |νi〉 with the de�nite

masses mi (i = 1, 2, 3).

Both sets of states are orthonormal: 〈νβ |να〉 = δαβ , 〈νj |νi〉 = δij .

⇓

They are related to ea
h other through a unitary transformation V = ||Vαi||, VV† = 1,

|να〉 =
∑

i

V ∗αi|νi〉, |νi〉 =
∑

α

Vαi|να〉.

[2℄ Massive neutrino states originated from any rea
tion or de
ay have the same de�nite momenta

pν [�equal momentum (EM) assumption�℄.

a

To simplify matter, we do not 
onsider exoti
 pro
esses with multiple neutrino produ
tion.

⇓

The �avor states |να〉 have the same momentum pν but have no de�nite mass and energy.

a

Sometimes � the same de�nite energies [�equal energy (EE) assumption�℄.
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[3℄ Neutrino masses are so small that in essentially all experimental 
ir
umstan
es (or, more

pre
isely, in a wide 
lass of referen
e frames) the neutrinos are ultrarelativisti
. Hen
e

Ek =
√

p2
ν +m2

k ≃ |pν |+ m2
k

2|pν |
.

[4℄ Moreover, in the evolution equation, one 
an safely repla
e the time parameter t by the distan
e

L between the neutrino sour
e and dete
tor. [Let's remind that ~ = c = 1.℄

The enumerated assumptions are su�
ient to derive the ni
e and 
ommonly a

epted expression for

the neutrino �avor transition probability [Ljk are the neutrino os
illation lengths℄:

P (να → νβ ;L) ≡ Pαβ(L) =
∑

jk

VαjVβk (VαkVβj)∗ exp

(
2iπL

Ljk

)

=
∑

j

|Vαj |2 |Vβj |2 + 2
∑

j>k

[
Re

(
V ∗αjVβjVαkV

∗
βk

)
cos

(
2πL

Ljk

)

+ Im

(
V ∗αjVβjVαkV

∗
βk

)
sin

(
2πL

Ljk

)]
,

Ljk =
4πEν

∆m2
jk

, Eν = |pν |, ∆m2
jk = m2

j −m2
k.

Just this result is the basis for the �os
illation interpretation� of the 
urrent experiments

with the natural and arti�
ial neutrino and antineutrino beams.
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5.5 Some 
hallenges against the QM approa
h.

� Equal-momentum assumption

Massive neutrinos νi have, by assumption, equal momenta: pi = pν (i = 1, 2, 3).

This key assumption seems to be unphysi
al being referen
e-frame (RF) dependent;

if it is true in a 
ertain RF then it is false in another RF moving with the velo
ity v:

E′i = Γv [Ei − (vpν)], p
′
i = pν + Γv

[
Γv(vpν)

Γv + 1
− Ei

]
v,

⇓ [assuming, as ne
essary for os
illations, that mi 6= mj ] ⇓
p
′
i − p

′
j =

(
E′j − E′i

)
v = Γv (Ej − Ei) v 6= 0.

Treating the Lorentz transformation as a
tive, we 
on
lude that the EM assumption 
annot be

applied to the non-monoenergeti
 ν beams (the 
ase in real-life experiments).

∗ A similar obje
tion exists against the alternative equal-energy assumption; in that 
ase

E′i −E′j = Γv (pj − pi) v 6= 0,
∣∣p′i − p

′
j

∣∣ =

√
|pi − pj |2 + Γ 2

v [(pi − pj) v]2 6= 0.

∗ Can the EM (or EE) assumption be at least a good approximation? Alas, no, it 
annot.

Let νµs arise from πµ2 de
ays. If the pion beam has a wide momentum spe
trum � from subrelativisti


to ultrarelativisti
 (as it is, e.g., for 
osmi
-ray parti
les), the EM (or EE) 
ondition 
annot be valid

even approximately within the whole spe
tral range of the pion neutrinos.
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� Light-ray approximation

The propagation time T is, by assumption, equal to the distan
e L traveled by the neutrino

between produ
tion and dete
tion points. But, if the massive neutrino 
omponents have the

same momentum pν , their velo
ities are in fa
t di�erent:

vi =
pν√

p2
ν +m2

i

=⇒ |vi − vj | ≈
∆m2

ji

2E2
ν
.

One may naively expe
t that during the time T the neutrino νi travels the distan
e Li = |vi|T ;

therefore, there must be a spread in distan
es of ea
h neutrino pair
δLij = Li − Lj ≈

∆m2
ji

2E2
ν
L, where L = cT = T .

∆m2
ji Eν L Lij |δLij |

∆m2
23 1 GeV 2R⊕ 0.1R⊕ ∼ 10−12


m

∆m2
23 1 TeV RG ∼ 100 kps 100R⊕ ∼ 10−4


m

∆m2
21 1 MeV 1 AU 0.25R⊕ ∼ 10−3


m

The values of δLij listed in the Table seem to be fantasti
ally small. But

Are they su�
iently small to preserve the 
oheren
e in any 
ir
umstan
e?

In other words:

What is the natural s
ale of the distan
es and times?
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� Can light neutrinos os
illate into heavy ones or vise versa?

[Can a
tive neutrinos os
illate into sterile ones or vise versa?℄

The naive QM answer is Yes. Why not? If, at least, both να (light) and νs (heavy) are

ultrarelativisti
 [ |pν | ≫ max(m1,m2,m3, . . . ,M), ℄ one obtains the same formula for the

os
illation probability Pαs(L), sin
e the QM formalism has no any limitation to the neutrino

mass hierar
hy.

Possibility of su
h transitions is a basis for many spe
ulations in astrophysi
s and 
osmology.

But! Assume again that the neutrino sour
e is πµ2 de
ay and M > mπ. Then the transition

να → νs in the pion rest frame is forbidden by the energy 
onservation.

⇓

There must be some limitations & �aws in the QM formula. What are they?

� Do reli
 neutrinos os
illate?

Most likely the lightest reli
 neutrinos are always relativisti
 or even ultrarelativisti
, while

heavier ones be
ome subrelativisti
 and then non-relativisti
 as the universe expands.

The naive QM approa
h does not know how to handle su
h a set of neutrinos.

� Does the motion of the neutrino sour
e a�e
t the transition probabilities?

To answer these and similar questions

one has to unload the UR approximation & develop a 
ovariant formalism.

72



In the QFT approa
h: the e�e
tive (most probable) energies and momenta of virtual νis are found to be

fun
tions of the masses, most probable momenta and momentum spreads of all parti
les (wave pa
kets)

involved into the neutrino produ
tion and dete
tion pro
esses.

In parti
ular, in the two limiting 
ases � ultrarelativisti
 (UR) and nonrelativisti
 (NR):

Ultrarelativisti
 
ase

(|q0
s,d| ∼ |qs,d| ≫ mi)






Ei= Eν

[
1 − nri − mr2

i + . . .
]
,

|pi|= Eν

[
1 − (n + 1) ri −

(
m + n +

1

2

)
r2

i + . . .

]
,

vi= 1 − ri −

(
2n +

1

2

)
r2

i + . . . < 1,

Nonrelativisti
 
ase

(|q0
s,d| ∼ mi ≫ |qs,d|)





Ei= mi +
miv

2
i

2

(
1 +

3

4
δi + . . .

)
,

|pi|= mivi

(
1 +

1

2
δi + . . .

)
,

vi≈
̺il

1 + ̺0
i

≪ 1,

p
s
i p

s
f

p
d
i p

d
f

q  = p  - p
d
f

d
i

d

ν
i

q  = p  - ps
f

s
i

s

Eν ≈ q0
s ≈ −q0

d, ri =
m2

i

2E2
ν

≪ 1 (UR),

̺µ
i =

1

miR

[
ℜ̃µ0

s

(
mi − q0

s

)
+ ℜ̃µ0

d

(
mi + q0

d

)
− ℜ̃µk

s qk
s + ℜ̃µk

d qk
d

]
, |̺µ

i | ≪ 1 (NR).
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� De�nite momentum assumption

In the naive QM approa
h, the assumed de�nite momenta of neutrinos (both να and νi) imply

that the spatial 
oordinates of neutrino produ
tion (Xs) and dete
tion (Xd) are fully un
ertain

(Heisenberg's prin
iple).

⇓

The distan
e L = |Xd −Xs| is un
ertain too, that makes the standard QM formula for the

�avor transition probabilities to be stri
tly speaking senseless.

In the 
orre
t theory, the neutrino momentum un
ertainty δ|pν | must be at least of the order of

min(1/Ds, 1/Dd), where Ds and Dd are the 
hara
teristi
 dimensions of the sour
e and

dete
tor �ma
hines� along the neutrino beam.

⇓

The neutrino states must be some wave pa
kets (WP) [though having very small spreads℄

dependent, in general, on the quantum states of the parti
les [or, more exa
tly, also WPs℄ whi
h

parti
ipate in the produ
tion and dete
tion pro
esses.

In the QFT approa
h: the e�e
tive WPs of virtual UR νis are found to be

ψ
(∗)
i = exp

{
±i(piXs,d) −

D̃2
i

E2
ν

[
(piX)2 −m2

iX
2
]}

, X = Xd −Xs,

where pi = (Ei,pi) and Xs,d are the 4-ve
tors whi
h 
hara
terize the spa
e-time lo
ation of the ν

produ
tion and dete
tion pro
esses, while D̃i are 
ertain (in general, 
omplex-valued) fun
tions of

the masses, mean momenta and momentum spreads of all parti
les involved into these pro
esses.

[D̃i/Eν and thereby ψi are Lorentz invariants.℄
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5.6 The aims and 
on
epts of the �eld-

theoreti
al approa
h.

The main purposes:

To de�ne the domain of appli
ability of the standard

quantum-me
hani
al (QM) theory of va
uum neutrino

os
illations and obtain the QFT 
orre
tions to it.

The basi
 
on
epts:

• The �ν-os
illation� phenomenon in QFT is nothing

else than a result of interferen
e of the ma
ros
opi


Feynman diagrams perturbatively des
ribing the lepton

number violating pro
esses with the massive neutrino

�elds as internal lines (propagators).

• The external lines of the ma
rodiagrams are wave

pa
kets rather than plane waves (therefore the standard

S matrix approa
h should be revised).

• The external wave pa
ket states are the 
ovariant

superpositions of the standard one-parti
le Fo
k states,

satisfying a 
orresponden
e prin
iple.

x 1

x 2

π  +

n

τ  −

µ  +

p

ν i

Referen
es: D. V. Naumov & VN, J. Phys. G 37 (2010) 105014, arXiv:1008.0306 [hep-ph℄; Russ. Phys. J.

53 (2010) 549�574; arXiv:1110.0989 [hep-ph℄; Ý×Àß 51 (2020) 1�209 [Phys. Part. Nu
l. 51 (2020) 1�106℄.
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5.7 A sket
h of the approa
h.

Let us �rst 
onsider the basi
s of the QFT approa
h using the simplest example.

5.7.1 QFT approa
h by the example of the rea
tion π⊕n → µ⊕τp.

+

pn 

−τ

µπ   +
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The rare rea
tions π+⊕n → µ+⊕ τ−p+ . . . were (indire
tly) dete
ted by several underground

experiments (Kamiokande, IMB, Super-Kamiokande) with atmospheri
 neutrinos. In 2010,

OPERA experiment (INFN, LNGS) with the CNGS neutrino beam announ
ed the dire
t

observation of the �rst τ−


andidate event; six 
andidates were re
orded in several years

of the dete
tor operation.

π
+

µ  +

ν
i

n

−

p

τ

π
+

µ  +

ν
i

n

−

p

τ
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+

νi

W
+

W −

pn

−τ

µπ+

→udd      uud

ud

}{i

A =∑
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+

νi

W
+

W −

pn

−τ

µπ+

→udd      uud

Vµi
*

Vτi

ud

}{i

A =∑

V    are the elements of the
Pontecorvo-Maki-Nakagawa
-Sakata (PMNS) neutrino
vacuum mixing matrix V.

 αi
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+

ν (q )i

W  (k)
+

W  (k')−

p -p *pn -p *n

−τ  -p *τ

µ  -p *
µπ  -p *

π
+

V
µi
*

V
τi

| 2 ( ) | 0E a+ñ = ñ
p

p p
ù

ù ù ù

( )3| (2 ) 2Ep dá ñ = -
k

q k k q

2 2 , , , ,E m np m= + = ¼
p

p ù

In the standard S matrix pertur-
bation theory the in & out states 
are one-particle Fock states:

ùù
ù
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+
W  (k)

+

W  (k')−

p -p *pn -p *n

−τ  -p *
τ

µ  -p *
µπ  -p *

π
+

V
µi
*

V
τi

| 2 ( ) | 0E a+ñ = ñ
p

p p
ù

ù ù ù

( )3| (2 ) 2Ep dá ñ = -
k

q k k q

2 2 , , , ,E m np m= + = ¼
p

p ù

In the standard S matrix pertur-
bation theory the in & out states 
are one-particle Fock states:

Feynman graphs
 with Fock legs
cannot reproduce
 the ν-oscillation
   phenomenon. ùù

ù
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+

ν (q )i

W  (k)
+

W  (k')−

p -p ,x *p pn -p ,x *n n

−τ  -p ,x *τ τ

µ  -p ,x *
µ µπ  -p ,x *

π π
+

V
µi
*

V
τi

In our approach the in and out
states are covariant wave packets:

( )

3

( , )
( , ) ( )

2(2 )

i k p xd e
A x a

E E

f

p

-
+ += ò

k p

k k p
p k

ù ù

PWL

( , ) ( ) , | , 2 VA x a x x m+ + Þ á ñ =p p p p֏
ù ù ⊻

| , 2 ( , ) | 0x E A x+ñ =  ñ
p

p p
ù

ù ù ù ù ù
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+

ν (q )i

W  (k)
+

W  (k')−

p -p ,x *p pn -p ,x *n n

−τ  -p ,x *τ τ

µ  -p ,x *
µ µπ  -p ,x *

π π
+

V
µi
*

V
τi

In our approach the in and out
states are covariant wave packets:

( )

3

( , )
( , ) ( )

2(2 )

i k p xd e
A x a

E E

f

p

-
+ += ò

k p

k k p
p k

ù ù

PWL

( , ) ( ) , | , 2 VA x a x x m+ + Þ á ñ =p p p p֏
ù ù ⊻

ν (q ))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))i

For simplicity we
omit the spin and 
other discrete 
variables in the
WP states

| , 2 ( , ) | 0x E A x+ñ =  ñ
p

p p
ù

ù ù ù ù ù
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ν (q )i

W  (k)
+

W  (k')−

p  -p ,x *p pn  -p ,x *n n

−τ   -p ,x *τ τ

µ   -p ,x *
µ µπ   -p ,x *

π π
+

V
µi
*

V
τi

Source vertex

Detector vertex

Interaction region

Interaction region

WP can be roughly thought
as small interpenetrative
cloudlets which are, however,
much larger than the micro-
scopic interaction regions in
the source/detector vertices. 

µ

π

n

p

τ
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+

ν (q )i

W  (k)
+

W  (k')−

p  -p ,x *p pn  -p ,x *n n

−τ   -p ,x *τ τ

µ   -p ,x *
µ µπ   -p ,x *

π π
+

V
µi
*

V
τi

Source vertex

Detector vertex

Interaction region

µ

τ

p

n

π

Interaction region

( )exp 1s∝ − ≪S

( )exp 1d∝ − ≪S

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q )

Unlucky configurations of the
world tubes of the WPs are
suppressed by the geometric

factors exp(-S   ) dependent 
of the in & out momenta and
space-time coordinates.

s,d
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+

ν (q )i

W  (k)
+

W  (k')−

p  -p ,x *p pn  -p ,x *n n

−τ   -p ,x *τ τ

µ   -p ,x *
µ µπ   -p ,x *

π π
+

V
µi
*

V
τi

Source vertex

Detector vertex

Interaction region

µ

τ

p

n

π

Interaction region

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q )

Lucky configurations of
the world tubes are not
suppressed, providing
possibility for interaction
of the WPs.

( )exp ~ 1s∝ −S

( )exp ~ 1d∝ −S
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ν (q )i

W  (k)
+

W  (k')−

p -p ,x *p pn -p ,x *n n

−τ  -p ,x *τ τ

µ  -p ,x *
µ µπ  -p ,x *

π π
+

V
µi
*

V
τi

Source vertex

Detector vertex

Interaction region
   (microscopic)

µ

τ

p

n

π

ν
i

Interaction region
   (microscopic)

Overlap
 region

Interaction region

Micro- or small
macro-scopic
(mesoscopic)

Large macroscopic distance
    (up to astronomical)

Micro-
scopic
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ν (q )i

W  (k)
+

W  (k')−

p  -p ,x *p pn  -p ,x *n n

−τ   -p ,x *τ τ

µ   -p ,x *
µ µπ   -p ,x *

π π
+

V
µi
*

V
τi

Source vertex

Detector vertex

Interaction region

µ

τ

p

n

π

ν
i

Interaction region

Overlap
 region

Overlap region

Impact

point Xs

Impact pointXd

)

The impact points X  and X 
are the 4-vectors defined as

s d

1

sX T T T x T x

1

d n p n n p pX T T T T x T x T x

0 1

, ,  ( )   s d s dx x p p X X֏ ֏
ù ù ù ù ù
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5.7.2 Spa
e-time s
ales.

In the 
ovariant WP approa
h there are several spa
e-time s
ales:

• T s,d
I and Rs,d

I � mi
ros
opi
 intera
tion time and radius de�ned by the Lagrangian.

• T s,d
O and Rs,d

O � mi
ros
opi
 or small ma
ros
opi
 dimensions of the overlap spa
e-time regions

of the intera
ting in and out pa
kets in the sour
e and dete
tor verti
es, de�ned by the e�e
tive

dimensions of the pa
kets.

The suppression of the �unlu
ky� 
on�gurations of world tubes of the external pa
kets is

governed by the geometri
 fa
tor in the amplitude:

exp [− (Ss + Sd)],

where Ss,d are the positive Lorentz and translation invariant fun
tions of {pκ} and {xκ}. In

the simplest one-parameter model of WP (relativisti
 Gaussian pa
ket)

Ss,d =
∑

σ2
κ
|b⋆

κ
|2, κ ∈ S,D,

where σκ are the momentum speeds of the pa
ket κ and b⋆
κ

is the 
lassi
al impa
t ve
tor in

the rest frame of the pa
ket κ relative to the 
orresponding impa
t point.

• T = X0
d −X0

s and L = |Xd −Xs| � large ma
ros
opi
 neutrino time of �ight and way between

the impa
t points Xs and Xd.

For light neutrinos, the impa
t points lie very 
lose to the light 
one T 2 = L2

.

• In usual 
ir
umstan
e (terrestrial experiments) T s,d
I ≪ T s,d

O ≪ T and Rs,d
I ≪ Rs,d

O ≪ L.
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5.7.3 Examples of ma
ros
opi
 diagrams.

• The pp fusion.

The �rst rea
tion of the pp I bran
h

1

H + 1

H→ 2

D + e+ + νe (Eν < 420 keV)

lights the Sun and 
an be dete
ted in Ga-Ge dete
tors like SAGE and GALLEX.

xs

νi

W

W

e

+

+

e−

p
p D

xdGa71 Ge71

2 xs

νi

W

W

e

+

+

e−

e− νj
xd

p
p D2 xs

νi

W

Z

e

+

e−e−

νi

xd

p
p D2

(a) (b) (c)

+ + +

These two diagrams interfere

The Figure illustrates the dete
tion of pp neutrinos with gallium (a) and ele
tron (b,
) targets.

Unfortunately, the �nal ele
tron energies in the rea
tions (b,
) are too low to be dete
ted by

Cherenkov method.
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• The pep fusion.

The rea
tion

1

H + 1

H + e− → 2

D + νe (Eν = 1.44 MeV)

a

ounts for about 0.25% of the deuterium 
reated in the Sun in the pp 
hain. It has a 
hara
teristi


time s
ale ∼ 1012

yr that is larger than the age of the Universe. So it is insigni�
ant in the Sun as far

as energy generation is 
on
erned. Enough pep fusions happen to produ
e a dete
table number of

neutrinos in Ga-Ge dete
tors. Hen
e the rea
tion must be a

ounted for by those interested in the

solar neutrino problem.

xs

νi

W

W

e−
+

+
e−

p
p D

xdGa71 Ge71

2 xs

νi

W

W

e−
+

+
e−

e− νj
xd

p
p D2 xs

νi

W

Z

e−
+

e−e−

νi

xd

p
p D2

(a) (b) (c)
These two diagrams interfere

The Figure illustrates the dete
tion of pep neutrinos with gallium (a) and ele
tron (b,
) targets.

Similar to the pp neutrino 
ase, the diagram sets (
) and (d) interfere. While the �nal ele
tron in the

dete
tor verti
es of the diagrams (b,
) may have a momentum above the Cherenkov threshold, the


urrent water-Cherenkov dete
tors SK and SNO+ are insensitive to the pep neutrinos.
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• The µe3 de
ay

µ− → e− + νe + νµ

in the sour
e 
an be dete
ted through

quasielasti
 s
attering with produ
tion

of e±, µ±, or τ±; of 
ourse, only µ±

produ
tion is permitted in SM. The

diagrams (a) and (b) are for both

Dira
 and Majorana (anti)neutrinos,

while diagrams (
) and (d) are only for

Majorana neutrinos.

In the Majorana 
ase, the diagrams (a),

(d) and (b), (
) interfere. Potentially

this provides a way for distinguishing

between the Dira
 and Majorana


ases. Unfortunately, the diagrams (
)

and (d) are suppressed by a fa
tor

∝ mi/Eν .

n

τ
+

W
−

ν  
j

µ−

e−
W

−

ν
i

τ
−

W
+

ν 
j

µ−

e−W
−

ν
i−

−

p xd xdn p 

xs xs

p

τ
−

W
+

ν  
j

µ−

e−
W

−

ν
i

τ
+

W
−

ν 
j

µ−

e−W
−

ν
i

n xd xdp n 

xs xs

D
ir

a
c 

o
r 

M
a
jo

ra
n
a

M
a
jo

ra
n
a

(a) (b)

(c) (d)

Similar diagrams 
an be drawn for τe3 and τµ3 de
ays.
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5.8 Shortest summary.

The QFT-based neutrino os
illation theory deals with generi


Feynman's ma
rodiagrams (�myriapods�). ⊲

The external legs 
orrespond to asymptoti
ally free in
oming

(�in�) and outgoing (�out�) wave pa
kets (WP) in the 
oordinate

representation. Here and below: Is (Fs) is the set of in (out) WPs in

Xs (�sour
e�), Id (Fd) is the set of in (out) WPs inXd (�dete
tor�).

Xd

Xs

νi

}
}

Is

Id

Fs

Fd

}

}

© Copyright California Institute of Technology. All rights reserved.

     Commercial use or modification of this material is prohibited. The internal line denotes the 
ausal Green's fun
tion of the

neutrino mass eigen�eld νi (i = 1, 2, 3, . . .). The blo
ks (verti
es)

Xs and Xd must be ma
ros
opi
ally separated in spa
e-time.

This explains the term �ma
ros
opi
 Feynman diagram�.

For narrow WPs, the Feynman rules in the formalism are to

be modi�ed

a

in a rather trivial way: for ea
h external line, the

standard (plain-wave) fa
tor must be multiplied by

{
e−ipa(xa−x)ψa (pa, xa − x) for a ∈ Is⊕Id,

e+ipb(xb−x)ψ∗b (pb, xb − x) for b ∈ Fs⊕Fd,

(16)

where ea
h fun
tion ψκ (pκ , x) (κ = a, b) is spe
i�ed by the

massmκ and momentum spread σκ. The lines inside Xs and Xd

(in
luding possible loops) and vertex fa
tors remain un
hanged.

a

For non-
ommer
ial purposes.

93



5.8.1 Important 
lass of ma
rodiagrams.

As a pra
ti
ally important example, we


onsider the 
harged-
urrent indu
ed

produ
tion of 
harged leptons ℓ+
α and ℓ−β

(ℓα,β = e, µ, τ) in the pro
ess

Is⊕Id → F ′s + ℓ+
α ⊕ F ′d + ℓ−β , (17)

We assume for de�niteness that all the

external substates Is, Id, F
′
s, and F

′
d 
onsist

ex
lusively of (asymptoti
ally free) hadroni


WPs.

Consequently, if α 6= β, the pro
ess (17)

violates the lepton numbers Lα and Lβ that

is only possible via ex
hange of massive

neutrinos (no matter whether they are Dira


or Majorana parti
les).

In the lowest nonvanishing order in

ele
troweak intera
tions, the pro
ess (17) is

des
ribed by the sum of the diagrams shown

in the �gure. ⊲

}

}I s

ν
j

W

Fs

ℓα
+

}F's

q q’

}
} }

I d

W

Fd

ℓβ
−

F'd

q’ q

Xs

Xd

qs

(q    = p  − p    )s,d in out

hadrons hadrons

hadrons hadrons

qd

QCD

QCD

The impa
t points Xs and Xd in the �gure are ma
ros
opi
ally separated and the asymptoti



onditions are assumed to be ful�lled.
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5.8.2 Main result.

A rather general (while not the most general) expression for the number of neutrino-indu
ed events


orresponding to the diagram shown in previous page, is of the form

Nβα

τd
=
∑

spins

∫
dx

∫
dy

∫
dPs

∫
dPd

∫
d|q|Pαβ (|q|, |y− x|)

4(2π)3|y− x|2 ,

Pαβ (|q|, |y− x|) =
∑

ij

VβjVαiV
∗

βiV
∗

αj exp
(
iϕij −A2

ij − C2
ij −Θij

)
Sij ,

Sij =
exp(−B2

ij)

4Dτd

2∑

l,l′=1

(−1)l+l′+1

Ierf

[
2D
(
x0

l − y0
l′ + |y− x|

)
+iBij

]
,

D = 1/

√
2ℜ̃µν lµlν ,

dPs = (2π)4δs(q − qs)|Ms|2
∏

a∈Is

dpafa(pa, sa, x)

(2π)32Ea

∏

b∈Fs

dpb

(2π)32Eb
,

dPd = (2π)4δd(q + qd)|Md|2
∏

a∈Id

dpafa(pa, sa, y)

(2π)32Ea

∏

b∈Fd

[dpb]

(2π)32Eb
.

The ingredients are listed on p. 96. These formulas do not take into a

ount the inverse-square law

violation 
orre
tions, for whi
h we unfortunately do not have enough time to dis
uss.

a

a

See VN & D. S. Shkirmanov, Eur. Phys. J. C 73 (2013) 2627; Universe 7 (2021) 246 and refs. therein.
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Òàáëèöà 1: Ingredients of the equations shown in p. 95, in the leading order for the o�-

mass-shell (short distan
es) and on-mass-shell (long distan
es) regimes. Here L = |y − x|,

∆m2
ij = m2

i −m2
j , Q4 =

(
R00Rµν − R0µR0ν

)
lµlν , Y

µ = ℜ̃µνs qsν − ℜ̃µνd qdν , ℜ̃s,d are the

so-
alled inverse overlap tensors of in and out WPs in the sour
e and dete
tor verti
es,

ℜ̃ = ℜ̃s + ℜ̃d, R is the tensor inverse to ℜ̃ (that is Rµλℜ̃λν = δµν ), and Σ = det(R)1/8

is the

s
ale of the energy-momentum dispersion of the e�e
tive neutrino WP. Last 
olumn shows the

order of magnitude (OoM) of the quantity. Evidently, Eν ≃ q0 ≃ |q| in the UR approximation.

Quantity O�-shell regime On-shell regime OoM

ϕij

∆m2
ijL

2|q|
∆m2

ijL

2Eν

|∆m2
ij |L

Eν

A2
ij

(
∆m2

ijL

2|q|2
)2 Q4

2Rµν lµlν

(
∆m2

ijL

2E2
ν

)2
1

2ℜ̃µν lµlν

(
∆m2

ij

E2
ν

ΣL

)2

Bij

∆m2
ij

4|q|

√
ℜ̃µν lµlν

2

R0µlµ
Rµν lµlν

∆m2
ij

4Eν

√
ℜ̃µν lµlν

2

Yklk
Y µlµ

|∆m2
ij |

ΣEν

C2
ij

(
∆m2

ij

2|q|

)2
1

8Rµν lµlν
0

(
∆m2

ij

ΣEν

)2

Θij

m2
i +m2

j

4|q|
[
ℜ̃0µ

s (q − qs)µ

m2
i +m2

j

4q0

[
ℜ̃µk

s lk (q0l − qs)µ

+ℜ̃0µ
d (q + qd)µ

]
+ℜ̃µk

d lk (q0l + qd)µ

] m2
i +m2

j

ΣEν
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