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5 Quantum-mehanial treatment.

5.1 Angels & hippopotami.

Aording to the urrent theoretial understanding, the

neutrino �elds/states of de�nite �avor are superpositions of

the �elds/states with de�nite, generally di�erent masses [and

vie versa℄:

να =
∑

i

Vαiνi for neutrino �elds,

|να〉 =
∑

i

V ∗αi|νi〉 for neutrino states;

α = e, µ, τ , i = 1, 2, 3, . . .

Here Vαi are the elements of the Ponteorvo-Maki-Nakagawa-

Sakata neutrino vauum mixing matrix V.

This onept leads to the possibility of transitions between

di�erent �avor neutrinos, να ←→ νβ , phenomenon known

as neutrino �avor osillations.
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Let us introdue two types of neutrino eigenstates:

• The �avor neutrino eigenstates whih an be written as a vetor

|ν〉
f

= (|νe〉, |νµ〉, |ντ 〉, . . .)T ≡ (|να〉)T

are de�ned as the states whih orrespond to the harge leptons α = e, µ, τ . The orrespondene is

established through the harged urrent interations of ative neutrinos and harged leptons.

Together with the standard νs, |ν〉
f

may inlude also neutrino states allied with additional heavy harged

leptons, as well as the states not assoiated with harge leptons, like sterile neutrinos, νs.

In general, the �avor states have no de�nite masses. Therefore, they an have either de�nite

momentum, or de�nite energy but not both.

• The neutrino mass eigenstates

|ν〉
m

= (|ν1〉, |ν2〉, |ν3〉, . . .)T ≡ (|νk〉)T

are, by de�nition, the states with the de�nite masses mk, k = 1, 2, 3, . . ..

Sine |να〉 and |νk〉 are not idential, they are related to eah other through a unitary transformation

|να〉 =
∑

k

V̂αk|νk〉 or |ν〉
f

= V̂|ν〉
m
,

where V̂ =‖ V̂αk ‖ is a unitary (in general, N×N) matrix.
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To �nd out the orrespondene between V̂ and the PMNS mixing matrix V we an normalize the

�f � and �m� states by the following onditions

〈0|ναL(x)|να′〉 = δαα′

and 〈0|νkL(x)|νk′〉 = δkk′ .

From these onditions we obtain

∑

k

VαkV̂α′k = δαα′

and

∑

α

VαkV̂αk′ = δkk′ .

Therefore

V̂ ≡ V
†

and

|ν〉
f

= V
†|ν〉

m
⇐⇒ |ν〉

m
= V|ν〉

f
. (11)

The time evolution of a single mass eigenstate |νk〉 with momentum pν is trivial,

i
d

dt
|νk(t)〉 = Ek|νk(t)〉 =⇒ |νk(t)〉 = e−iEk(t−t0)|νk(t0)〉,

where Ek =
√
p2

ν +m2
k is the total energy in the state |νk〉. Now, assuming that all N states |νk〉

have the same momentum, one an write

i
d

dt
|ν(t)〉

m
= H0|ν(t)〉

m
, where H0 = diag (E1, E2, E3, . . .). (12)
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From Eqs. (11) and (12) we have

i
d

dt
|ν(t)〉

f
= V

†
H0V|ν(t)〉

f
. (13)

Solution to this equation is obvious:

|ν(t)〉
f

= V
†e−iH0(t−t0)

V |ν(t0)〉
f

= V
†

diag

(
e−iE1(t−t0), e−iE2(t−t0), . . .

)
V |ν(t0)〉

f
. (14)

Now we an derive the survival and transition probabilities

Pαβ(t− t0)= P [να(t0)→ νβ(t)]= |〈νβ(t)|να(t0)〉|2

=

∣∣∣
∑

k

VαkV
∗

βk exp [iEk(t− t0)]

∣∣∣
2

=
∑

jk

VαjVβk (VαkVβj)∗ exp [i(Ej − Ek)(t− t0)].

In the ultrarelativisti limit p2
ν ≫ m2

k, whih is undoubtedly valid for all interesting irumstanes

(exept reli neutrinos),

Ek =
√
p2

ν +m2
k ≈ pν +

m2
k

2pν
≈ Eν +

m2
k

2Eν
.
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Therefore in very good approximation

Pαβ(t− t0) =
∑

jk

VαjVβk (VαkVβj)∗ exp

[
i∆m2

jk(t− t0)

2Eν

]
.

As a rule, there is no way to measure t0 and t in the same experiment.

a

But it is usually possible to

measure the distane L between the soure and detetor. So we have to onnet t− t0 with L. It is

easy to do in the standard ultrarelativisti approximation,

vk =
pν

Ek
≃ 1− m2

k

2E2
ν

= 1− 0.5× 10−14
(

mk

0.1 eV

)2 (1 MeV

Eν

)2

≃ 1,

from whih it almost evidently follows that t− t0 ≈ L. Finally we arrive at the following formula

Pαβ(L) =
∑

jk

VαjVβk (VαkVβj)∗ exp

(
2iπL

Ljk

)
, Ljk =

4πEν

∆m2
jk

, (15)

where Ljk (or more exatly |Ljk| = |Lkj |) are the so-alled neutrino osillation lengths.

It is straightforward to prove that the QM formula satis�es the probability onservation law:

∑

α

Pαβ(L) =
∑

β

Pαβ(L) = 1.

The range of appliability of the standard quantum-mehanial approah is limited but enough for

the interpretation of essentially all modern experiments with aelerator, reator, atmospheri, solar,

and astrophysial neutrino beams.

a

Important exeptions will be disussed in the speial setion.
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5.2 Energy onservation.

Although the energy of the state with de�nite �avor, |να(L)〉 = |να(t)〉, is not de�ned, its mean

energy, 〈Eα(t)〉 = 〈να(t)|Ĥ|να(t)〉, is a well-de�ned and onserved quantity. Indeed,

〈Eα(t)〉 =
∑

ij

VαiV
∗

αj〈νi(p)|Ĥ|νj(p)〉 =
∑

ij

VαiV
∗

αj〈νi(p)|Ei|νj(p)〉 ≡ 〈Eα〉 = inv.

〈Eα〉 =
∑

i

|Vαi|2Ei ≃ p+
∑

i

|Vαi|2m
2
i

2p
, =⇒

∑

α

〈Eα〉 =
∑

i

Ei ≃ 3

(
p+

∑

i

m2
i

2p

)
.

Moreover, the mean energy of an arbitrary entangled state haraterized by a ertain density matrix

ρ(t) is also onserved. Indeed, let the initial state have the form

ρ(0) =
∑

α

wα|να(0)〉〈να(0)|,

The mean energy of the mixed state at arbitrary time t is then written as

〈E(t)〉 = Tr

(
Ĥρ(t)

)
= Tr

(
Ĥe−iĤtρ(0)eiĤt

)

=
∑

α

wα

∑

ij

V ∗αiVαje
−i(Ei−Ej )tEi Tr|νi(p)〉〈νj(p)|

=
∑

α

wα

∑

i

|Vαi|2Ei = inv, =⇒ 〈E(t)〉 =
∑

α

wα〈Eα〉.

Naturally, 〈E(t)〉 = 〈Eα〉 for the pure initial state |να(0)〉 (when ρ(0) = |να(0)〉〈να(0)|).
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5.3 Simplest example: two-�avor osillations.

Let's now onsider the simplest (toy) 2-�avor model, e.g., with i = 2, 3 and α = µ, τ (the most

favorable due to the SK and other underground experiments). The 2× 2 vauum mixing matrix an

be parametrized (due to the unitarity) with a single parameter, θ (= θ23), the vauum mixing angle,

V =

(
cos θ sin θ

− sin θ cos θ

)
, 0 ≤ θ ≤ π

2
.

In this model, Eq. (15) then beomes very simple and

transparent:

Pµτ (L) = Pτµ(L) =
1

2
sin2 2θ

[
1− cos

(
2πL

L

v

)]
,

L

v

≡ L23 =
4πEν

∆m2
23

≈ 2R⊕

(
Eν

10 GeV

)(
0.002 eV

2

∆m2
23

)
.

Here R⊕ is the mean radius of Earth and 10 GeV is a

typial energy in the (very wide) atmospheri neutrino

spetrum.

Sine Earth provides variable �baseline� [from about

15 km to about 12700 km℄, it is surprisingly suitable

for studying the atmospheri (as well as aelerator

and reator) neutrino osillations in rather wide range

of the osillation parameters.

https://universe-review.ca/R15-13-neutrino.htm
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Zenith angle and momentum distributions for atmospheri neutrino subsamples used for an analyses

by Super-Kamiokande to study subleading e�ets, preferenes for mass hierarhy and δ

CP

, as well as

searhes for astrophysial soures suh as dark matter annihilation.

[From T. Kajita et al. (for the Super-Kamiokande Collaboration), �Establishing atmospheri neutrino osillations with

Super-Kamiokande, �Nul. Phys. B 908 (2016) 14�29.℄
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The event spetra at MINOS from 10.71× 1020

POT FHC (νµ-dominated) mode, 3.36× 1020

POT

RHC (νµ-dominated) mode and 37.88 kt·yrs of atmospheri data. The data are shown ompared to

the predition in absene of osillations (grey lines) and to the best-�t predition (red). The beam

histograms (top) also inlude the NC bakground omponent (�lled grey) and the atmospheri

histograms (bottom) inlude the osmi-ray bakground ontribution �lled blue).

[From L. H. Whitehead (For the MINOS Collaboration), �Neutrino osillations with MINOS and MINOS+,� Nul. Phys.

B 908 (2016) 130�150.℄
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5.4 Summary of the standard QM theory.

The standard assumptions are intuitively transparent and (almost) ommonly aepted.

[1℄ The neutrino �avor states |να〉 assoiated with the harged leptons α = e, µ, τ (that is having

de�nite lepton numbers) are not idential to the neutrino mass eigenstates |νi〉 with the de�nite

masses mi (i = 1, 2, 3).

Both sets of states are orthonormal: 〈νβ |να〉 = δαβ , 〈νj |νi〉 = δij .

⇓

They are related to eah other through a unitary transformation V = ||Vαi||, VV† = 1,

|να〉 =
∑

i

V ∗αi|νi〉, |νi〉 =
∑

α

Vαi|να〉.

[2℄ Massive neutrino states originated from any reation or deay have the same de�nite momenta

pν [�equal momentum (EM) assumption�℄.

a

To simplify matter, we do not onsider exoti proesses with multiple neutrino prodution.

⇓

The �avor states |να〉 have the same momentum pν but have no de�nite mass and energy.

a

Sometimes � the same de�nite energies [�equal energy (EE) assumption�℄.
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[3℄ Neutrino masses are so small that in essentially all experimental irumstanes (or, more

preisely, in a wide lass of referene frames) the neutrinos are ultrarelativisti. Hene

Ek =
√

p2
ν +m2

k ≃ |pν |+ m2
k

2|pν |
.

[4℄ Moreover, in the evolution equation, one an safely replae the time parameter t by the distane

L between the neutrino soure and detetor. [Let's remind that ~ = c = 1.℄

The enumerated assumptions are su�ient to derive the nie and ommonly aepted expression for

the neutrino �avor transition probability [Ljk are the neutrino osillation lengths℄:

P (να → νβ ;L) ≡ Pαβ(L) =
∑

jk

VαjVβk (VαkVβj)∗ exp

(
2iπL

Ljk

)

=
∑

j

|Vαj |2 |Vβj |2 + 2
∑

j>k

[
Re

(
V ∗αjVβjVαkV

∗
βk

)
cos

(
2πL

Ljk

)

+ Im

(
V ∗αjVβjVαkV

∗
βk

)
sin

(
2πL

Ljk

)]
,

Ljk =
4πEν

∆m2
jk

, Eν = |pν |, ∆m2
jk = m2

j −m2
k.

Just this result is the basis for the �osillation interpretation� of the urrent experiments

with the natural and arti�ial neutrino and antineutrino beams.
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5.5 Some hallenges against the QM approah.

� Equal-momentum assumption

Massive neutrinos νi have, by assumption, equal momenta: pi = pν (i = 1, 2, 3).

This key assumption seems to be unphysial being referene-frame (RF) dependent;

if it is true in a ertain RF then it is false in another RF moving with the veloity v:

E′i = Γv [Ei − (vpν)], p
′
i = pν + Γv

[
Γv(vpν)

Γv + 1
− Ei

]
v,

⇓ [assuming, as neessary for osillations, that mi 6= mj ] ⇓
p
′
i − p

′
j =

(
E′j − E′i

)
v = Γv (Ej − Ei) v 6= 0.

Treating the Lorentz transformation as ative, we onlude that the EM assumption annot be

applied to the non-monoenergeti ν beams (the ase in real-life experiments).

∗ A similar objetion exists against the alternative equal-energy assumption; in that ase

E′i −E′j = Γv (pj − pi) v 6= 0,
∣∣p′i − p

′
j

∣∣ =

√
|pi − pj |2 + Γ 2

v [(pi − pj) v]2 6= 0.

∗ Can the EM (or EE) assumption be at least a good approximation? Alas, no, it annot.

Let νµs arise from πµ2 deays. If the pion beam has a wide momentum spetrum � from subrelativisti

to ultrarelativisti (as it is, e.g., for osmi-ray partiles), the EM (or EE) ondition annot be valid

even approximately within the whole spetral range of the pion neutrinos.
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� Light-ray approximation

The propagation time T is, by assumption, equal to the distane L traveled by the neutrino

between prodution and detetion points. But, if the massive neutrino omponents have the

same momentum pν , their veloities are in fat di�erent:

vi =
pν√

p2
ν +m2

i

=⇒ |vi − vj | ≈
∆m2

ji

2E2
ν
.

One may naively expet that during the time T the neutrino νi travels the distane Li = |vi|T ;

therefore, there must be a spread in distanes of eah neutrino pair
δLij = Li − Lj ≈

∆m2
ji

2E2
ν
L, where L = cT = T .

∆m2
ji Eν L Lij |δLij |

∆m2
23 1 GeV 2R⊕ 0.1R⊕ ∼ 10−12

m

∆m2
23 1 TeV RG ∼ 100 kps 100R⊕ ∼ 10−4

m

∆m2
21 1 MeV 1 AU 0.25R⊕ ∼ 10−3

m

The values of δLij listed in the Table seem to be fantastially small. But

Are they su�iently small to preserve the oherene in any irumstane?

In other words:

What is the natural sale of the distanes and times?
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� Can light neutrinos osillate into heavy ones or vise versa?

[Can ative neutrinos osillate into sterile ones or vise versa?℄

The naive QM answer is Yes. Why not? If, at least, both να (light) and νs (heavy) are

ultrarelativisti [ |pν | ≫ max(m1,m2,m3, . . . ,M), ℄ one obtains the same formula for the

osillation probability Pαs(L), sine the QM formalism has no any limitation to the neutrino

mass hierarhy.

Possibility of suh transitions is a basis for many speulations in astrophysis and osmology.

But! Assume again that the neutrino soure is πµ2 deay and M > mπ. Then the transition

να → νs in the pion rest frame is forbidden by the energy onservation.

⇓

There must be some limitations & �aws in the QM formula. What are they?

� Do reli neutrinos osillate?

Most likely the lightest reli neutrinos are always relativisti or even ultrarelativisti, while

heavier ones beome subrelativisti and then non-relativisti as the universe expands.

The naive QM approah does not know how to handle suh a set of neutrinos.

� Does the motion of the neutrino soure a�et the transition probabilities?

To answer these and similar questions

one has to unload the UR approximation & develop a ovariant formalism.
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In the QFT approah: the e�etive (most probable) energies and momenta of virtual νis are found to be

funtions of the masses, most probable momenta and momentum spreads of all partiles (wave pakets)

involved into the neutrino prodution and detetion proesses.

In partiular, in the two limiting ases � ultrarelativisti (UR) and nonrelativisti (NR):

Ultrarelativisti ase

(|q0
s,d| ∼ |qs,d| ≫ mi)






Ei= Eν

[
1 − nri − mr2

i + . . .
]
,

|pi|= Eν

[
1 − (n + 1) ri −

(
m + n +

1

2

)
r2

i + . . .

]
,

vi= 1 − ri −

(
2n +

1

2

)
r2

i + . . . < 1,

Nonrelativisti ase

(|q0
s,d| ∼ mi ≫ |qs,d|)





Ei= mi +
miv

2
i

2

(
1 +

3

4
δi + . . .

)
,

|pi|= mivi

(
1 +

1

2
δi + . . .

)
,

vi≈
̺il

1 + ̺0
i

≪ 1,

p
s
i p

s
f

p
d
i p

d
f

q  = p  - p
d
f

d
i

d

ν
i

q  = p  - ps
f

s
i

s

Eν ≈ q0
s ≈ −q0

d, ri =
m2

i

2E2
ν

≪ 1 (UR),

̺µ
i =

1

miR

[
ℜ̃µ0

s

(
mi − q0

s

)
+ ℜ̃µ0

d

(
mi + q0

d

)
− ℜ̃µk

s qk
s + ℜ̃µk

d qk
d

]
, |̺µ

i | ≪ 1 (NR).
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� De�nite momentum assumption

In the naive QM approah, the assumed de�nite momenta of neutrinos (both να and νi) imply

that the spatial oordinates of neutrino prodution (Xs) and detetion (Xd) are fully unertain

(Heisenberg's priniple).

⇓

The distane L = |Xd −Xs| is unertain too, that makes the standard QM formula for the

�avor transition probabilities to be stritly speaking senseless.

In the orret theory, the neutrino momentum unertainty δ|pν | must be at least of the order of

min(1/Ds, 1/Dd), where Ds and Dd are the harateristi dimensions of the soure and

detetor �mahines� along the neutrino beam.

⇓

The neutrino states must be some wave pakets (WP) [though having very small spreads℄

dependent, in general, on the quantum states of the partiles [or, more exatly, also WPs℄ whih

partiipate in the prodution and detetion proesses.

In the QFT approah: the e�etive WPs of virtual UR νis are found to be

ψ
(∗)
i = exp

{
±i(piXs,d) −

D̃2
i

E2
ν

[
(piX)2 −m2

iX
2
]}

, X = Xd −Xs,

where pi = (Ei,pi) and Xs,d are the 4-vetors whih haraterize the spae-time loation of the ν

prodution and detetion proesses, while D̃i are ertain (in general, omplex-valued) funtions of

the masses, mean momenta and momentum spreads of all partiles involved into these proesses.

[D̃i/Eν and thereby ψi are Lorentz invariants.℄
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5.6 The aims and onepts of the �eld-

theoretial approah.

The main purposes:

To de�ne the domain of appliability of the standard

quantum-mehanial (QM) theory of vauum neutrino

osillations and obtain the QFT orretions to it.

The basi onepts:

• The �ν-osillation� phenomenon in QFT is nothing

else than a result of interferene of the marosopi

Feynman diagrams perturbatively desribing the lepton

number violating proesses with the massive neutrino

�elds as internal lines (propagators).

• The external lines of the marodiagrams are wave

pakets rather than plane waves (therefore the standard

S matrix approah should be revised).

• The external wave paket states are the ovariant

superpositions of the standard one-partile Fok states,

satisfying a orrespondene priniple.

x 1

x 2

π  +

n

τ  −

µ  +

p

ν i

Referenes: D. V. Naumov & VN, J. Phys. G 37 (2010) 105014, arXiv:1008.0306 [hep-ph℄; Russ. Phys. J.

53 (2010) 549�574; arXiv:1110.0989 [hep-ph℄; Ý×Àß 51 (2020) 1�209 [Phys. Part. Nul. 51 (2020) 1�106℄.
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5.7 A sketh of the approah.

Let us �rst onsider the basis of the QFT approah using the simplest example.

5.7.1 QFT approah by the example of the reation π⊕n → µ⊕τp.

+

pn 

−τ

µπ   +
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The rare reations π+⊕n → µ+⊕ τ−p+ . . . were (indiretly) deteted by several underground

experiments (Kamiokande, IMB, Super-Kamiokande) with atmospheri neutrinos. In 2010,

OPERA experiment (INFN, LNGS) with the CNGS neutrino beam announed the diret

observation of the �rst τ−

andidate event; six andidates were reorded in several years

of the detetor operation.

π
+

µ  +

ν
i

n

−

p

τ

π
+

µ  +

ν
i

n

−

p

τ
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+

νi

W
+

W−

pn

−τ

µπ+

→udd      uud

ud

}{i

A =∑
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+

νi

W
+

W−

pn

−τ

µπ+

→udd      uud

Vµi
*

Vτi

ud

}{i

A =∑

V    are the elements of the
Pontecorvo-Maki-Nakagawa
-Sakata (PMNS) neutrino
vacuum mixing matrix V.

 αi
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+

ν (q )i

W  (k)
+

W  (k')−

p -p *pn -p *n

−τ  -p *τ

µ  -p *
µπ  -p *

π
+

V
µi
*

V
τi

| 2 ( ) | 0E a+ñ = ñ
p

p p
ù

ù ù ù

( )3| (2 ) 2Ep dá ñ = -
k

q k k q

2 2 , , , ,E m np m= + = ¼
p

p ù

In the standard S matrix pertur-
bation theory the in & out states 
are one-particle Fock states:

ùù
ù
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+
W  (k)
+

W  (k')−

p -p *pn -p *n

−τ  -p *
τ

µ  -p *
µπ  -p *

π
+

V
µi
*

V
τi

| 2 ( ) | 0E a+ñ = ñ
p

p p
ù

ù ù ù

( )3| (2 ) 2Ep dá ñ = -
k

q k k q

2 2 , , , ,E m np m= + = ¼
p

p ù

In the standard S matrix pertur-
bation theory the in & out states 
are one-particle Fock states:

Feynman graphs
 with Fock legs
cannot reproduce
 the ν-oscillation
   phenomenon. ùù

ù
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+

ν (q )i

W  (k)
+

W  (k')−

p -p ,x *p pn -p ,x *n n

−τ  -p ,x *τ τ

µ  -p ,x *
µ µπ  -p ,x *

π π
+

V
µi
*

V
τi

In our approach the in and out
states are covariant wave packets:

( )

3

( , )
( , ) ( )

2(2 )

i k p xd e
A x a

E E

f

p

-
+ += ò

k p

k k p
p k

ù ù

PWL

( , ) ( ) , | , 2 VA x a x x m+ + Þ á ñ =p p p p֏
ù ù ⊻

| , 2 ( , ) | 0x E A x+ñ =  ñ
p

p p
ù

ù ù ù ù ù
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+

ν (q )i

W  (k)
+

W  (k')−

p -p ,x *p pn -p ,x *n n

−τ  -p ,x *τ τ

µ  -p ,x *
µ µπ  -p ,x *

π π
+

V
µi
*

V
τi

In our approach the in and out
states are covariant wave packets:

( )

3

( , )
( , ) ( )

2(2 )

i k p xd e
A x a

E E

f

p

-
+ += ò

k p

k k p
p k

ù ù

PWL

( , ) ( ) , | , 2 VA x a x x m+ + Þ á ñ =p p p p֏
ù ù ⊻

ν (q ))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))i

For simplicity we
omit the spin and 
other discrete 
variables in the
WP states

| , 2 ( , ) | 0x E A x+ñ =  ñ
p

p p
ù

ù ù ù ù ù
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+

ν (q )i

W  (k)
+

W  (k')−

p  -p ,x *p pn  -p ,x *n n

−τ   -p ,x *τ τ

µ   -p ,x *
µ µπ   -p ,x *

π π
+

V
µi
*

V
τi

Source vertex

Detector vertex

Interaction region

Interaction region

WP can be roughly thought
as small interpenetrative
cloudlets which are, however,
much larger than the micro-
scopic interaction regions in
the source/detector vertices. 

µ

π

n

p

τ

84



+

ν (q )i

W  (k)
+

W  (k')−

p  -p ,x *p pn  -p ,x *n n

−τ   -p ,x *τ τ

µ   -p ,x *
µ µπ   -p ,x *

π π
+

V
µi
*

V
τi

Source vertex

Detector vertex

Interaction region

µ

τ

p

n

π

Interaction region

( )exp 1s∝ − ≪S

( )exp 1d∝ − ≪S

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q )

Unlucky configurations of the
world tubes of the WPs are
suppressed by the geometric

factors exp(-S   ) dependent 
of the in & out momenta and
space-time coordinates.

s,d
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+

ν (q )i

W  (k)
+

W  (k')−

p  -p ,x *p pn  -p ,x *n n

−τ   -p ,x *τ τ

µ   -p ,x *
µ µπ   -p ,x *

π π
+

V
µi
*

V
τi

Source vertex

Detector vertex

Interaction region

µ

τ

p

n

π

Interaction region

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q )

Lucky configurations of
the world tubes are not
suppressed, providing
possibility for interaction
of the WPs.

( )exp ~ 1s∝ −S

( )exp ~ 1d∝ −S
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+

ν (q )i

W  (k)
+

W  (k')−

p -p ,x *p pn -p ,x *n n

−τ  -p ,x *τ τ

µ  -p ,x *
µ µπ  -p ,x *

π π
+

V
µi
*

V
τi

Source vertex

Detector vertex

Interaction region
   (microscopic)

µ

τ

p

n

π

ν
i

Interaction region
   (microscopic)

Overlap
 region

Interaction region

Micro- or small
macro-scopic
(mesoscopic)

Large macroscopic distance
    (up to astronomical)

Micro-
scopic
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+

ν (q )i

W  (k)
+

W  (k')−

p  -p ,x *p pn  -p ,x *n n

−τ   -p ,x *τ τ

µ   -p ,x *
µ µπ   -p ,x *

π π
+

V
µi
*

V
τi

Source vertex

Detector vertex

Interaction region

µ

τ

p

n

π

ν
i

Interaction region

Overlap
 region

Overlap region

Impact

point Xs

Impact pointXd

)

The impact points X  and X 
are the 4-vectors defined as

s d

1

sX T T T x T x

1

d n p n n p pX T T T T x T x T x

0 1

, ,  ( )   s d s dx x p p X X֏ ֏
ù ù ù ù ù
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5.7.2 Spae-time sales.

In the ovariant WP approah there are several spae-time sales:

• T s,d
I and Rs,d

I � mirosopi interation time and radius de�ned by the Lagrangian.

• T s,d
O and Rs,d

O � mirosopi or small marosopi dimensions of the overlap spae-time regions

of the interating in and out pakets in the soure and detetor verties, de�ned by the e�etive

dimensions of the pakets.

The suppression of the �unluky� on�gurations of world tubes of the external pakets is

governed by the geometri fator in the amplitude:

exp [− (Ss + Sd)],

where Ss,d are the positive Lorentz and translation invariant funtions of {pκ} and {xκ}. In

the simplest one-parameter model of WP (relativisti Gaussian paket)

Ss,d =
∑

σ2
κ
|b⋆

κ
|2, κ ∈ S,D,

where σκ are the momentum speeds of the paket κ and b⋆
κ

is the lassial impat vetor in

the rest frame of the paket κ relative to the orresponding impat point.

• T = X0
d −X0

s and L = |Xd −Xs| � large marosopi neutrino time of �ight and way between

the impat points Xs and Xd.

For light neutrinos, the impat points lie very lose to the light one T 2 = L2

.

• In usual irumstane (terrestrial experiments) T s,d
I ≪ T s,d

O ≪ T and Rs,d
I ≪ Rs,d

O ≪ L.
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5.7.3 Examples of marosopi diagrams.

• The pp fusion.

The �rst reation of the pp I branh

1

H + 1

H→ 2

D + e+ + νe (Eν < 420 keV)

lights the Sun and an be deteted in Ga-Ge detetors like SAGE and GALLEX.

xs

νi

W

W

e

+

+

e−

p
p D

xdGa71 Ge71

2 xs

νi

W

W

e

+

+

e−

e− νj
xd

p
p D2 xs

νi

W

Z

e

+

e−e−

νi

xd

p
p D2

(a) (b) (c)

+ + +

These two diagrams interfere

The Figure illustrates the detetion of pp neutrinos with gallium (a) and eletron (b,) targets.

Unfortunately, the �nal eletron energies in the reations (b,) are too low to be deteted by

Cherenkov method.
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• The pep fusion.

The reation

1

H + 1

H + e− → 2

D + νe (Eν = 1.44 MeV)

aounts for about 0.25% of the deuterium reated in the Sun in the pp hain. It has a harateristi

time sale ∼ 1012

yr that is larger than the age of the Universe. So it is insigni�ant in the Sun as far

as energy generation is onerned. Enough pep fusions happen to produe a detetable number of

neutrinos in Ga-Ge detetors. Hene the reation must be aounted for by those interested in the

solar neutrino problem.

xs

νi

W

W

e−
+

+
e−

p
p D

xdGa71 Ge71

2 xs

νi

W

W

e−
+

+
e−

e− νj
xd

p
p D2 xs

νi

W

Z

e−
+

e−e−

νi

xd

p
p D2

(a) (b) (c)
These two diagrams interfere

The Figure illustrates the detetion of pep neutrinos with gallium (a) and eletron (b,) targets.

Similar to the pp neutrino ase, the diagram sets () and (d) interfere. While the �nal eletron in the

detetor verties of the diagrams (b,) may have a momentum above the Cherenkov threshold, the

urrent water-Cherenkov detetors SK and SNO+ are insensitive to the pep neutrinos.
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• The µe3 deay

µ− → e− + νe + νµ

in the soure an be deteted through

quasielasti sattering with prodution

of e±, µ±, or τ±; of ourse, only µ±

prodution is permitted in SM. The

diagrams (a) and (b) are for both

Dira and Majorana (anti)neutrinos,

while diagrams () and (d) are only for

Majorana neutrinos.

In the Majorana ase, the diagrams (a),

(d) and (b), () interfere. Potentially

this provides a way for distinguishing

between the Dira and Majorana

ases. Unfortunately, the diagrams ()

and (d) are suppressed by a fator

∝ mi/Eν .

n

τ
+

W
−

ν  
j

µ−

e−
W

−

ν
i

τ
−

W
+

ν 
j

µ−

e−W
−

ν
i−

−

p xd xdn p 

xs xs

p

τ
−

W
+

ν  
j

µ−

e−
W

−

ν
i

τ
+

W
−

ν 
j

µ−

e−W
−

ν
i

n xd xdp n 

xs xs

D
ir

a
c 

o
r 

M
a
jo

ra
n
a

M
a
jo

ra
n
a

(a) (b)

(c) (d)

Similar diagrams an be drawn for τe3 and τµ3 deays.
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5.8 Shortest summary.

The QFT-based neutrino osillation theory deals with generi

Feynman's marodiagrams (�myriapods�). ⊲

The external legs orrespond to asymptotially free inoming

(�in�) and outgoing (�out�) wave pakets (WP) in the oordinate

representation. Here and below: Is (Fs) is the set of in (out) WPs in

Xs (�soure�), Id (Fd) is the set of in (out) WPs inXd (�detetor�).

Xd

Xs

νi

}
}

Is

Id

Fs

Fd

}

}

© Copyright California Institute of Technology. All rights reserved.

     Commercial use or modification of this material is prohibited. The internal line denotes the ausal Green's funtion of the

neutrino mass eigen�eld νi (i = 1, 2, 3, . . .). The bloks (verties)

Xs and Xd must be marosopially separated in spae-time.

This explains the term �marosopi Feynman diagram�.

For narrow WPs, the Feynman rules in the formalism are to

be modi�ed

a

in a rather trivial way: for eah external line, the

standard (plain-wave) fator must be multiplied by

{
e−ipa(xa−x)ψa (pa, xa − x) for a ∈ Is⊕Id,

e+ipb(xb−x)ψ∗b (pb, xb − x) for b ∈ Fs⊕Fd,

(16)

where eah funtion ψκ (pκ , x) (κ = a, b) is spei�ed by the

massmκ and momentum spread σκ. The lines inside Xs and Xd

(inluding possible loops) and vertex fators remain unhanged.

a

For non-ommerial purposes.
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5.8.1 Important lass of marodiagrams.

As a pratially important example, we

onsider the harged-urrent indued

prodution of harged leptons ℓ+
α and ℓ−β

(ℓα,β = e, µ, τ) in the proess

Is⊕Id → F ′s + ℓ+
α ⊕ F ′d + ℓ−β , (17)

We assume for de�niteness that all the

external substates Is, Id, F
′
s, and F

′
d onsist

exlusively of (asymptotially free) hadroni

WPs.

Consequently, if α 6= β, the proess (17)

violates the lepton numbers Lα and Lβ that

is only possible via exhange of massive

neutrinos (no matter whether they are Dira

or Majorana partiles).

In the lowest nonvanishing order in

eletroweak interations, the proess (17) is

desribed by the sum of the diagrams shown

in the �gure. ⊲

}

}I s

ν
j

W

Fs

ℓα
+

}F's

q q’

}
} }

I d

W

Fd

ℓβ
−

F'd

q’ q

Xs

Xd

qs

(q    = p  − p    )s,d in out

hadrons hadrons

hadrons hadrons

qd

QCD

QCD

The impat points Xs and Xd in the �gure are marosopially separated and the asymptoti

onditions are assumed to be ful�lled.
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5.8.2 Main result.

A rather general (while not the most general) expression for the number of neutrino-indued events

orresponding to the diagram shown in previous page, is of the form

Nβα

τd
=
∑

spins

∫
dx

∫
dy

∫
dPs

∫
dPd

∫
d|q|Pαβ (|q|, |y− x|)

4(2π)3|y− x|2 ,

Pαβ (|q|, |y− x|) =
∑

ij

VβjVαiV
∗

βiV
∗

αj exp
(
iϕij −A2

ij − C2
ij −Θij

)
Sij ,

Sij =
exp(−B2

ij)

4Dτd

2∑

l,l′=1

(−1)l+l′+1

Ierf

[
2D
(
x0

l − y0
l′ + |y− x|

)
+iBij

]
,

D = 1/

√
2ℜ̃µν lµlν ,

dPs = (2π)4δs(q − qs)|Ms|2
∏

a∈Is

dpafa(pa, sa, x)

(2π)32Ea

∏

b∈Fs

dpb

(2π)32Eb
,

dPd = (2π)4δd(q + qd)|Md|2
∏

a∈Id

dpafa(pa, sa, y)

(2π)32Ea

∏

b∈Fd

[dpb]

(2π)32Eb
.

The ingredients are listed on p. 96. These formulas do not take into aount the inverse-square law

violation orretions, for whih we unfortunately do not have enough time to disuss.

a

a

See VN & D. S. Shkirmanov, Eur. Phys. J. C 73 (2013) 2627; Universe 7 (2021) 246 and refs. therein.
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Òàáëèöà 1: Ingredients of the equations shown in p. 95, in the leading order for the o�-

mass-shell (short distanes) and on-mass-shell (long distanes) regimes. Here L = |y − x|,

∆m2
ij = m2

i −m2
j , Q4 =

(
R00Rµν − R0µR0ν

)
lµlν , Y

µ = ℜ̃µνs qsν − ℜ̃µνd qdν , ℜ̃s,d are the

so-alled inverse overlap tensors of in and out WPs in the soure and detetor verties,

ℜ̃ = ℜ̃s + ℜ̃d, R is the tensor inverse to ℜ̃ (that is Rµλℜ̃λν = δµν ), and Σ = det(R)1/8

is the

sale of the energy-momentum dispersion of the e�etive neutrino WP. Last olumn shows the

order of magnitude (OoM) of the quantity. Evidently, Eν ≃ q0 ≃ |q| in the UR approximation.

Quantity O�-shell regime On-shell regime OoM

ϕij

∆m2
ijL

2|q|
∆m2

ijL

2Eν

|∆m2
ij |L

Eν

A2
ij

(
∆m2

ijL

2|q|2
)2 Q4

2Rµν lµlν

(
∆m2

ijL

2E2
ν

)2
1

2ℜ̃µν lµlν

(
∆m2

ij

E2
ν

ΣL

)2

Bij

∆m2
ij

4|q|

√
ℜ̃µν lµlν

2

R0µlµ
Rµν lµlν

∆m2
ij

4Eν

√
ℜ̃µν lµlν

2

Yklk
Y µlµ

|∆m2
ij |

ΣEν

C2
ij

(
∆m2

ij

2|q|

)2
1

8Rµν lµlν
0

(
∆m2

ij

ΣEν

)2

Θij

m2
i +m2

j

4|q|
[
ℜ̃0µ

s (q − qs)µ

m2
i +m2

j

4q0

[
ℜ̃µk

s lk (q0l − qs)µ

+ℜ̃0µ
d (q + qd)µ

]
+ℜ̃µk

d lk (q0l + qd)µ

] m2
i +m2

j

ΣEν
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