Tasks for seminar

1. Estimate the arrival time delay of mass eigenstates of an electron neutrino with energy 15 MeV born in SN 1987A, assuming $m_{1}=0, m_{2}=8.6, m_{3}=50 \mathrm{meV}$.

Inputs: Distance from LMC is about 50 kps (experimental range is $40-55 \mathrm{kps}$), $1 \mathrm{ps} \approx 30.9 \times 10^{12} \mathrm{~km}$.

1. Estimate the arrival time delay of mass eigenstates of an electron neutrino with energy 15 MeV born in SN 1987A, assuming $m_{1}=0, m_{2}=8.6, m_{3}=50 \mathrm{meV}$.

Inputs: Distance from LMC is about 50 kps (experimental range is $40-55 \mathrm{kps}$), $1 \mathrm{ps} \approx 30.9 \times 10^{12} \mathrm{~km}$.

Solution: $\quad \delta t_{1 i} \approx \frac{m_{i}^{2}}{2 E_{\nu}^{2}} \frac{L_{\mathrm{LMC}}}{c} \Longrightarrow \delta t_{12} \approx 8.5 \times 10^{-7} \mathrm{~s}, \quad \delta t_{13} \approx 2.9 \times 10^{-5} \mathrm{~s}$.
2. Estimate the pion production threshold in a collision of a CR proton with a CMB photon.

Inputs: $\left\langle E_{\gamma}\right\rangle_{\mathrm{CMB}} \equiv\left\langle h \nu_{\gamma}\right\rangle=k_{B} T_{\mathrm{CMB}} \simeq 2.349 \times 10^{-4} \mathrm{eV}, m_{\pi^{+}} \simeq 139.56995 \mathrm{MeV}$, $m_{\pi^{0}} \simeq 134.97660 \mathrm{MeV}, m_{p} \simeq 938.27231 \mathrm{MeV}, m_{n} \simeq 939.56536 \mathrm{MeV}$.
2. Estimate the pion production threshold in a collision of a $C R$ proton with a CMB photon.

Inputs: $\left\langle E_{\gamma}\right\rangle_{\mathrm{CMB}} \equiv\left\langle h \nu_{\gamma}\right\rangle=k_{B} T_{\mathrm{CMB}} \simeq 2.349 \times 10^{-4} \mathrm{eV}, m_{\pi^{+}} \simeq 139.56995 \mathrm{MeV}$, $m_{\pi^{0}} \simeq 134.97660 \mathrm{MeV}, m_{p} \simeq 938.27231 \mathrm{MeV}, m_{n} \simeq 939.56536 \mathrm{MeV}$.

Solution: $\quad s=\left(p_{1}+p_{\gamma}\right)^{2}=m_{p}^{2}+2 E_{\gamma}\left(E_{1}-P_{1} \cos \theta\right)$, where $E_{1}^{2}=P_{1}^{2}+m_{p}^{2}$, $P_{1}=\left|\mathbf{p}_{1}\right|$. On the other hand, $s=\left(p_{2}+p_{\pi}\right)^{2}=\left(p_{2}^{*}+p_{\pi}^{*}\right)^{2}$, where $*$ marks the center of mass frame of the final state $\left(\mathbf{p}_{1}^{*}+\mathbf{p}_{\pi}^{*}=0\right) \Longrightarrow s=\left(E_{2}^{*}+E_{\pi}^{*}\right)^{2} \geq\left(m_{N}+m_{\pi}\right)^{2} \Longrightarrow$ $2 E_{\gamma}\left(E_{1}-P_{1} \cos \theta\right) \geq\left(m_{N}+m_{\pi}\right)^{2}-m_{p}^{2}$. Clearly $P_{1}^{2} \gg m_{p}^{2} \Longrightarrow$

$$
E_{\mathrm{th}}=\left.E_{1}\right|_{\theta=\pi} \simeq \frac{\left(m_{N}+m_{\pi}\right)^{2}-m_{p}^{2}}{4 E_{\gamma}} \simeq\left\{\begin{array}{l}
3.0 \times 10^{20} \frac{\left\langle h \nu_{\gamma}\right\rangle}{E_{\gamma}} \mathrm{eV} \text { for } p \gamma \rightarrow n \pi^{+} \\
2.9 \times 10^{20} \frac{\left\langle h \nu_{\gamma}\right\rangle}{E_{\gamma}} \mathrm{eV} \text { for } p \gamma \rightarrow p \pi^{0}
\end{array}\right.
$$

3. Estimate the maximum energy of the neutrino from a GZK pion.

Inputs: $\quad m_{\pi} \simeq 139.569950 \mathrm{MeV}, m_{\mu} \simeq 105.658387 \mathrm{MeV}, m_{e} \simeq 0.51099907 \mathrm{MeV}$.
3. Estimate the maximum energy of the neutrino from a GZK pion.

Inputs: $\quad m_{\pi} \simeq 139.569950 \mathrm{MeV}, m_{\mu} \simeq 105.658387 \mathrm{MeV}, m_{e} \simeq 0.51099907 \mathrm{MeV}$.
Solution: $\quad E_{\nu}^{*}=\frac{m_{\pi}^{2}-m_{\ell}^{2}}{2 m_{\pi}} \Longrightarrow E_{\nu}=\Gamma\left(E_{\nu}^{*}-\mathbf{v p}_{\nu}^{*}\right) \Longrightarrow E_{\nu}^{\max } \approx\left(1-\frac{m_{\ell}^{2}}{m_{\pi}^{2}}\right) E_{\pi}$ $\Longrightarrow E_{\nu}^{\max } \approx 0.42691 E_{\pi}$ for ν_{μ} and $0.999987 E_{\pi}$ for ν_{e}.
4. Prove that any nonsingular matrix \mathbf{M} can be diagonalized by a bi-unitary transformation $\mathbf{M}=\tilde{\mathbf{V}} \mathbf{m} \mathbf{V}^{\dagger}, \mathbf{m}=\left\|m_{k} \delta_{k l}\right\|=\operatorname{diag}\left(m_{1}, m_{2}, \ldots, m_{N}\right), m_{k}>0, \quad \mathbf{V} \mathbf{V}^{\dagger}=\tilde{\mathbf{V}} \tilde{\mathbf{V}}^{\dagger}=\mathbf{1}$.

Comment: Recall that this theorem plays an important role in the theory of the Dirac neutrino.
4. Prove that any nonsingular matrix \mathbf{M} can be diagonalized by a bi-unitary transformation

$$
\mathbf{M}=\widetilde{\mathbf{V}} \mathbf{m} \mathbf{V}^{\dagger}, \quad \mathbf{m}=\left\|m_{k} \delta_{k l}\right\|=\operatorname{diag}\left(m_{1}, m_{2}, \ldots, m_{N}\right), m_{k}>0, \quad \mathbf{V} \mathbf{V}^{\dagger}=\widetilde{\mathbf{V}} \tilde{\mathbf{V}}^{\dagger}=\mathbf{1}
$$

Comment: Recall that this theorem plays an important role in the theory of the Dirac neutrino.

Proof: Matrix $\mathbf{M M}^{\dagger}$ is Hermitian, $\left(\mathbf{M M}^{\dagger}\right)^{\dagger}=\mathbf{M M}^{\dagger}, \Longrightarrow$ there exist a unitary matrix $\widetilde{\mathbf{V}}$ such that

$$
\tilde{\mathbf{V}}^{\dagger}\left(\mathbf{M M}^{\dagger}\right) \tilde{\mathbf{V}}=\mathbf{m}^{2}=\operatorname{diag}\left(m_{1}^{2}, m_{2}^{2}, \ldots, m_{N}^{2}\right)
$$

where $m_{i}^{2}>0$ for any i. Indeed, $\mathbf{M}^{\dagger} \widetilde{\mathbf{V}}=\left(\tilde{\mathbf{V}}^{\dagger} \mathbf{M}\right)^{\dagger}$ and thus

$$
m_{i}^{2}=\sum_{j}\left(\widetilde{\mathbf{V}}^{\dagger} \mathbf{M}\right)_{i j}\left(\widetilde{\mathbf{V}}^{\dagger} \mathbf{M}\right)_{i j}^{*}=\sum_{j}\left|\left(\widetilde{\mathbf{V}}^{\dagger} \mathbf{M}\right)_{i j}\right|^{2} \geq 0
$$

the equality is however excluded since \mathbf{m}^{2} is nonsingular. Let's now define the matrix $\mathbf{V}=\mathbf{M}^{\dagger} \widetilde{\mathbf{V}} \mathbf{m}^{-1}$. We have:

$$
\mathbf{V}^{\dagger}=\mathbf{m}^{-1} \tilde{\mathbf{V}}^{\dagger} \mathbf{M} \Longrightarrow \mathbf{V}^{\dagger} \mathbf{V}=\mathbf{m}^{-1} \tilde{\mathbf{V}}^{\dagger} \mathbf{M} \mathbf{M}^{\dagger} \tilde{\mathbf{V}} \mathbf{m}^{-1}=\mathbf{1}
$$

that is the matrix \mathbf{V} is unitary and $\widetilde{\mathbf{V}}^{\dagger} \mathbf{M V}=\mathbf{m}$.
5. Find the masses of physical neutrinos for the Lagrangian with a mass matrix

$$
\mathbf{M}=\left(\begin{array}{ll}
m_{L} & m_{D} \\
m_{D} & m_{R}
\end{array}\right), \quad\left(m_{L, R, D}>0\right)
$$

Comment: Recall that this trivial example is the basis for the see-saw mechanism.
5. Find the masses of physical neutrinos for the Lagrangian with a mass matrix

$$
\mathbf{M}=\left(\begin{array}{ll}
M_{L} & M_{1} \\
M_{2} & M_{R}
\end{array}\right) \quad\left(M_{L, R, 1,2} \geq 0\right)
$$

Comment: Recall that this trivial example is the basis for the see-saw mechanism.
Solution: Eigenvalues $m_{1,2}$ of the matrix \mathbf{M} satisfy the equation $\operatorname{det}(\lambda-\mathbf{M})=0$.
Therefore $\lambda^{2}-\left(M_{L}+M_{R}\right) \lambda+M_{L} M_{R}-M_{1} M_{2}=0$. The solution is

$$
\lambda_{ \pm}=\frac{1}{2}\left[M_{L}+M_{R} \pm \sqrt{\left(M_{L}-M_{R}\right)^{2}+4 M_{1} M_{2}}\right]
$$

Note: λ_{-}can be negative if $M_{1} M_{2}>M_{L} M_{R}$. Since, however, the sign of the eigenfields can always be redefined, the physical masses are $m_{1}=\lambda_{+}$and $m_{2}=\left|\lambda_{-}\right|$.
Let's now try to diagonalize \mathbf{M} by a unitary transformation

$$
\begin{equation*}
\mathbf{V}^{\dagger} \mathbf{M} \mathbf{V}=\operatorname{diag}\left(\lambda_{-}, \lambda_{+}\right) \equiv \mathbf{m} \tag{1}
\end{equation*}
$$

Since the \mathbf{M} is positive definite, $\mathbf{V}^{\dagger}=\mathbf{V}^{\boldsymbol{\top}} \Longrightarrow \mathbf{V}$ is just a rotation matrix,

$$
\mathbf{V}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) \Longrightarrow \mathbf{V}^{\boldsymbol{\top}}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right), \quad \mathbf{V} \mathbf{V}^{\top}=\mathbf{1}
$$

From Eq. (1) we have

$$
\mathbf{V m V}^{\dagger}=\mathbf{M} \Longrightarrow\left(\begin{array}{ll}
\cos ^{2} \theta \lambda_{-}+\sin ^{2} \theta \lambda_{+} & \sin \theta \cos \theta\left(\lambda_{+}-\lambda_{-}\right) \\
\sin \theta \cos \theta\left(\lambda_{-}+\lambda_{-}\right) & \cos ^{2} \theta \lambda_{+}+\sin ^{2} \theta \lambda_{-}
\end{array}\right)=\left(\begin{array}{ll}
M_{L} & M_{1} \\
M_{2} & M_{R}
\end{array}\right) .
$$

Oh, the horror! We got $\sin \theta \cos \theta\left(\lambda_{+}-\lambda_{-}\right)=M_{1}$ and $\sin \theta \cos \theta\left(\lambda_{-}+\lambda_{-}\right)=M_{2}$. What does that mean?! Nothing unexpected. The Majorana mass matrix should be symmetric, otherwise the unitary transformation we need does not exist. So further we put $M_{1}=M_{2}=M_{D}$. The order of the eigenvalues in Eq. (1) provides $\theta>0$. We have

$$
\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\left(\lambda_{+}-\lambda_{-}\right)=M_{R}-M_{L} \text { and } \sin \theta \cos \theta\left(\lambda_{+}-\lambda_{-}\right)=M_{D} .
$$

Given that $\cos ^{2} \theta-\sin ^{2} \theta=\cos 2 \theta$ and $2 \sin \theta \cos \theta=\sin 2 \theta$ we obtain

$$
\tan 2 \theta=\frac{2 M_{D}}{M_{R}-M_{L}} \Longleftrightarrow \theta=\frac{1}{2} \arctan \left(\frac{2 M_{D}}{M_{R}-M_{L}}\right) .
$$

Let's now consider the most interesting special case $M_{R} \equiv M \gg M_{D} \equiv m$ and $M_{L}=0$. Then

$$
\lambda_{+} \simeq M, \quad \lambda_{-} \simeq-\frac{m^{2}}{M} \simeq-\theta m, \text { and } \theta \simeq \frac{m}{M}
$$

This is the see-saw case: $m_{1}=\lambda_{+}$is a large (GUT?) mass and $m_{2}=-\lambda_{-}$is a small mass.

