
4 See-saw mehanism.

4.1 Dira-Majorana mass term for one generation.

It is possible to onsider mixed models in whih both Majorana and Dira mass terms are present.

For simpliity sake we'll start with a toy model for one lepton generation.

Let us onsider a theory ontaining two independent neutrino �elds νL and νR:




νL would generally represent any ative neutrino (e.g., νL = νeL),

νR an represents a right handed �eld unrelated to any of these or

it an be harge onjugate of any of the ative neutrinos (e.g., νR = (νµL)c

).

We an write the following generi mass term between νL and νR:

Lm = − mD νLνR︸ ︷︷ ︸

Dira mass term

− (1/2) [mL νLν
c
L +mR ν

c
RνR]︸ ︷︷ ︸

Majorana mass term

+H.. (5)

⋆ As we know, the Dira mass term respets L while the Majorana mass term violates it.

⋆ The parameter mD in Eq. (5) is in general omplex; to simplify matters, we'll assume it to be

real but not neessarily positive.

⋆ The parameters mL, and mR in Eq. (5) an be hosen real and (by an appropriate rephasing the

�elds νL and νR) non-negative, but the latter is not assumed.

⋆ Obviously, neither νL nor νR is a mass eigenstate.
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In order to obtain the mass basis we an apply the useful identity

νLνR = (νR)c(νL)c
(6)

The identity (6) is a partiular ase of the more general relation

ψ1Γψ2 = ψ
c
2CΓ

TC−1ψc
1,

in whih ψ1,2 are Dira spinors and Γ represents an arbitrary ombination of the Dira γ matries.

Relation (6) allows us to rewrite Eq. (5) as follows

Lm = −1

2
(νL, (νR)c)

(
mL mD

mD mR

)(
(νL)c

νR

)
+ H.. ≡ −1

2
νLM (νL)c + H..

If (again for simpliity) CP onservation is assumed the matrix M an be diagonalized by the

orthogonal transformation that is rotation

V =

(
cos θ sin θ

− sin θ cos θ

)

with θ =
1

2
arctan

(
2mD

mR −mL

)
.

and we have

V
T

MV = diag(m1,m2),

where m1,2 are eigenvalues of M given by

m1,2 =
1

2

(
mL +mR ±

√
(mL −mR)2 + 4m2

D

)
.
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The eigenvalues are real if (as we assume) mD,L,R are real, but not neessarily positive. Let

us de�ne ζk = signmk and rewrite the mass term in the new basis:

Lm = −1

2
[ζ1 |m1| ν1L (ν1L)

c
+ ζ2 |m2| (ν2R)

c
ν2R] + H.., (7)

The new �elds ν1L and ν2R represent hiral omponents of two di�erent neutrino states with

�masses� m1 and m2, respetively:

(
νL

νcR

)
= V

(
ν1L

νc2R

)
=⇒

{
ν1L= cos θ νL − sin θ νcR,

ν2R= sin θ νcL + cos θ νR.

Now we de�ne two 4-omponent �elds

ν1 = ν1L + ζ1 (ν1L)
c

and ν2 = ν2R + ζ2 (ν2R)
c
.

Certainly, these �elds are self-onjugate with respet to the C transformation:

νck = ζkνk (k = 1, 2)

and therefore they desribe Majorana neutrinos. In terms of these �elds Eq. (7) reads

Lm = −1

2
(|m1| ν1ν1 + |m2| ν2ν2). (8)

We an onlude therefore that νk(x) is the Majorana neutrino �eld with the de�nite

(physial) mass |mk|.
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There are several speial ases of the Dira-Majorana mass matrix M whih are of onsiderable

phenomenologial importane, in partiular,

(A): M =

(
0 m

m 0

)
=⇒ |m1,2| = m, θ =

π

4

(maximal mixing).

Two Majorana �elds are equivalent to one Dira �eld.

A generalization |mL,R| ≪ |mD|, leads to the so-alled

Pseudo-Dira neutrinos.

(B): M =

(
mL m

m mL

)
=⇒ m1,2 = mL ±mD, θ =

π

4
(maximal mixing);

(C): M =

(
0 m

m M

)

or, more generally, |mL| ≪ |mR|, mD > 0.

The see-saw

The ase (C) with m≪M is the simplest example of the see-saw mehanism. It leads to two

masses, one very large, m1 ≈M , other very small, m2 ≈ −m2/M ≪ m, suppressed ompared to the

entries in M. In partiular, one an assume

m ∼ mℓ or mq (0.5 MeV to 200 GeV) and M ∼M

GUT

∼ 1015−16

GeV.

Then |m2| an ranges from ∼ 10−14
eV to ∼ 0.04 eV. The mixing between the heavy and light

neutrinos is extremely small: θ ≈ m/M ∼ 10−20 − 10−13 ≪ 1.
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If one eigenvalue goes up, the other

goes down, and vie versa. This is the

reason of the term see-saw...

a bit intriate for so simple idea...
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4.2 More neutral fermions.

A generalization of the above sheme to N generations is almost straightforward but tehnially

rather umbersome. Let's onsider it shematially for the N = 3 ase.

⊲ If neutral fermions are added to the set of the SM �elds, then the �avour neutrinos an aquire

mass by mixing with them.

⊲ The additional fermions an be

a

• Gauge hiral singlets per family N (e.g., right-handed neutrinos) [Type I seesaw℄, or

• SU(2)× U(1) doublets (e.g., Higgsino in SUSY), or

• Y = 0, SU(2)L triplets Σ (e.g., Wino in SUSY) [Type III seesaw℄.

⊲ Addition of three right-handed neutrinos NiR leads to the see-saw mehanism with the following

mass terms:

Lm = −
∑

ij

[
νiLM

D
ijNjR − 1

2
(NiR)c MR

ijNjR + H..

]
.

⊲ The above equation leads to the following 6× 6 see-saw mass matrix:

M =

(
0 mT

D

mD MR

)
.

Both mD and MR are 3× 3 matries in the generation spae.

a

Type II seesaw operates with additional SU(2)L salar triplets ∆.
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Similar to the one-generation ase we assume that the eigenvalues of MR are large in omparison

with the eigenvalues of mD. Then M an be approximately blok-diagonalized by an unitary

transformation:

U
†
MU = diag (M1,M2) +O

(
mDM

−1
R

)
,

where

U =



1 +
1

2
m
†
D

(
MRM

†
R

)−1
mD m

†
D

(
M
†
R

)−1

−M−1
R mD 1 +

1

2
M−1

R mDm
†
D

(
M
†
R

)−1



.

M1 ≃MR and M2 ≃ −m
T
DM

−1
R mD

The mass eigen�elds are surely Majorana neutrinos.

• Quadrati see-saw: If eigenvalues of MR are of the order of a large sale parameter M ∼M

GUT

a

[e.g., MR = M1℄ than the standard neutrino masses are suppressed:

mi ∼ m2
Di

M
≪ mDi,

Here mDi ∼ Yi〈H〉 are the eigenvalues of mD. As long as these eigenvalues (or Yukawa

ouplings Yi) are hierarhial, the Majorana neutrino masses display quadrati hierarhy:

m1 : m2 : m3 ∝ m2
D1 : m2

D2 : m2
D3.

a

Large M is natural in, e.g., SO(10) inspired GUT models whih therefore provide a nie framework to

understand small neutrino masses.
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• Linear see-saw: In a more speial ase, MR = (M/MD)MD, where MD is the generi sale of

the harged fermion masses than

mi ∼ MDmDi

M
≪ mDi

but the hierarhy is linear:

m1 : m2 : m3 ∝ mD1 : mD2 : mD3.

The two mentioned possibilities are, in priniple, experimentally distinguishable.
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Beyond this setion

✦ Double see-saw

∗

✦ Inverse see-saw

∗

✦ Radiative see-saw

∗

✦ SUSY & SUGRA see-saw

✦ TeV-sale gauged B − L symmetry

∗

✦ TeV see-saw & large extra dimensions

✦ See-saw & Dark Matter

✦ See-saw & Leptogenesis

✦ See-saw & Baryogenesis

✦ Dira see-saw

✦ Top (top-bottom) see-saw

✦ Casade see-saw

✦ ...

∗

See Bakup.

Conlusions (not really on�rmed)

• The �mainstream� ν mass models, de�ned as see-saw models, are apable of

desribing the atmospheri�reator�aelerator ν osillation data, the LMA

MSW solar neutrino solution, and osmologial limits. The SM and MSSM

may naturally be extended to inorporate the see-saw mehanism.

• [A �y in the ointment℄ Wealth of the models (≫ number of the authors of

the models) greatly ompliates the hoie of the best one.
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4.3 Here's what we know today (we're getting ahead of ourselves).

W
i
t
h

S
K

a
t
m

o
s
p
h
e
r
i


d
a
t
a

Normal Ordering (best �t) Inverted Ordering (∆χ2 = 7.0)

bfp ±1σ 3σ range bfp ±1σ 3σ range

sin2 θ12 0.304+0.012
−0.012 0.269→ 0.343 0.304+0.013

−0.012 0.269→ 0.343

θ12/
◦ 33.45+0.77

−0.75 31.27→ 35.87 33.45+0.78
−0.75 31.27→ 35.87

sin2 θ23 0.450+0.019
−0.016 0.408→ 0.603 0.570+0.016

−0.022 0.410→ 0.613

θ23/
◦ 42.1+1.1

−0.9 39.7→ 50.9 49.0+0.9
−1.3 39.8→ 51.6

sin2 θ13 0.02246+0.00062
−0.00062 0.02060→ 0.02435 0.02241+0.00074

−0.00062 0.02055→ 0.02457

θ13/
◦ 8.62+0.12

−0.12 8.25→ 8.98 8.61+0.14
−0.12 8.24→ 9.02

δCP/
◦ 230+36

−25 144→ 350 278+22
−30 194→ 345

∆m2
21

10−5

eV

2 7.42+0.21
−0.20 6.82→ 8.04 7.42+0.21

−0.20 6.82→ 8.04

∆m2
3ℓ

10−3

eV

2 +2.510+0.027
−0.027 +2.430→ +2.593 −2.490+0.026

−0.028 −2.574→ −2.410

Three-�avor osillation parameters from a reent �t to global data (�NuFIT 5.1�) performed by the

NuFIT team. Note that ∆m2
3ℓ ≡ ∆m2

31 > 0 for NO and ∆m2
3ℓ ≡ ∆m2

32 < 0 for IO.

[See I. Esteban et al. (The NuFIT team), �The fate of hints: updated global analysis of three-�avor neutrino osillations,�

JHEP09(2020)178, arXiv:2007.14792 [hep-ph℄. Present update (Otober 2021) is from 〈 http://www.nu-�t.org/ 〉.℄
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List of data used in the NuFIT 5.1 analysis (Otober 2021)

Solar experiments:

Homestake hlorine total rate (1 dp), Gallex & GNO total rates (2 dp), SAGE total rate (1 dp), SK-I full

energy and zenith spetrum (44 dp), SK-II full energy and day/night spetrum (33 dp), SK-III full

energy and day/night spetrum (42 dp), SK-IV 2970-day day-night asymmetry and energy spetrum

(24 dp), SNO ombined analysis (7 dp), Borexino Phase-I 741-day low-energy data (33 dp), Borexino

Phase-I 246-day high-energy data (6 dp), Borexino Phase-II 408-day low-energy data (42 dp).

Atmospheri experiments:

IeCube/DeepCore 3-year data (64 dp), SK-I�IV 364.8 kiloton years + χ2
map.

Reator experiments:

KamLAND separate DS1, DS2, DS3 spetra with Daya-Bay reator νe �uxes (69 dp), Double-Chooz

FD/ND spetral ratio, with 1276-day (FD), 587-day (ND) exposures (26 dp), Daya-Bay 1958-day

EH2/EH1 and EH3/EH1 spetral ratios (52 dp), RENO 2908-day FD/ND spetral ratio (45 dp).

Aelerator experiments:

MINOS 10.71 PoT20 νµ-disappearane data (39 dp), MINOS 3.36 PoT20 νµ-disappearane data

(14 dp), MINOS 10.60 PoT20 νe-appearane data (5 dp), MINOS 3.30 PoT20 νe-appearane (5 dp),

T2K 19.7 PoT20 νµ-disappearane data (35 dp), T2K 19.7 PoT20 νe-appearane data (23 dp for the

CCQE and 16 dp for CC1π samples), T2K 16.3 PoT20 νµ-disappearane data (35 dp), T2K

16.3 PoT20 νe-appearane data (23 dp), NOvA 13.6 PoT20 νµ-disappearane data (76 dp), NOvA

13.6 PoT20 νe-appearane data (13 dp), NOvA 12.5 PoT20 νµ-disappearane data (76 dp), NOvA

12.5 PoT20 νe-appearane data (13 dp).

Here dp = data point(s), PoT20 = 1020

PoT (Protons on Target), and EH = Experiment Hall.
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4.3.1 Neutrino osillation parameter plot.

The regions of neutrino squared-mass splitting

∆m2 =
∣∣∆m2

ij

∣∣ =
∣∣m2

j −m2
i

∣∣

and tan2 θ (where θ is one of the mixing angles

θij orresponding to a partiular experiment)

favored or exluded by various experiments.

Contributed to RPP-2018

a

by Hitoshi Murayama

(University of California, Berkeley).

Figure inludes the most rigorous results from

before 2018, but data from many earlier

experiments (e.g., BUST, NUSEX, Fr�ejus, IMB,

Kamiokande, MACRO, SOUDAN2) are ignored.

a

M. Tanabashi et al. (Partile Data Group), �Review

of Partile Physis�, Phys. Rev. D 98 (2018) 030001.
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In the absene of CP violation, the mixing

angles may be represented as Euler angles

relating the �avor eigenstates to the mass

eigenstates. ⊲

Aording to the NuFIT analysis (p. 45),

the best-�t mixing angles and δ for the

normal mass ordering (a bit preferred) are:

PNMS CKM

θ12/
◦ 33.45+0.77

−0.75 13.04 ± 0.05

θ23/
◦ 42.1+1.1

−0.9 2.38 ± 0.06

θ13/
◦ 8.62+0.12

−0.12 0.201 ± 0.011

δ◦ 230+36
−25 68.8 ± 4.5

The CKM angles and CP phase are also

shown for omparison.

It should be stressed that the neutrino mass

spetrum is still undetermined. ⊲

[Figures (slightly modi�ed and updated) are taken

from S. F. King, �Neutrino mass and mixing in the

seesaw playground,� arXiv:1511.03831 [hep-ph℄.℄

ν1

ν2

ν3

νµ

ντ

νe

θ12

θ13

θ23

θ13

θ12

θ23

0

solar~7.4 10−5eV2

atmospheric
~2.5 10−3eV2

atmospheric
~2.5 10−3eV2

m1
2

m2
2

m3
2

0

m2
2

m1
2

m3
2

e µ

? ?

solar~7.4 10−5eV2

+

+

+

+

τ
ν ν ν

NH IH

Flavor ontent of mass states and mass ontent of �avor states is the same for Dira ν and ν (CP

phase δ only hanges the sign for ν) and for Majorana left/right νs (

∣∣V D

αi

∣∣ =
∣∣V M

αi

∣∣

).
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4.3.2 Flavor ontent of mass states and mass ontent of �avor states.

(
|Vαi|2

)

NH

=




0.681 0.297 0.0225

0.130 0.430 0.439

0.189 0.273 0.538


 ,

(
|Vαi|2

)

IH

=




0.681 0.297 0.0224

0.149 0.294 0.557

0.170 0.409 0.421


 .

νe

νe

νµ

νµ

ντ

ντ

νe

νe

νµ

νµ

ντ

ντ

νe

νµ

νµ

ντ

ντ

ν1

ν1

ν1

ν1

ν1

ν1

ν

ν2

ν2
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ν2

ν2

ν3

ν3

ν3
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ν3

ν 1 ν 3ν 2

ν e ν 
τ

ν 
µ
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2
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4.3.3 Current status of the neutrino masses from osillation experiments.

So, NuFIT 5.1 provides the following onstraints for the mass squared splittings:

m2
2 −m2

1 = 7.42+0.21
−0.20 × 10−5

eV

2

(�solar� for NH and IH)

m2
3 −m2

1 = 2.51+0.027
−0.027 × 10−3

eV

2

(�atmospheri� for NH)

m2
2 −m2

3 = 2.49+0.026
−0.028 × 10−3

eV

2

(�atmospheri� for IH)

These result imply that at least two of the neutrino eigen�elds have nonzero masses and thus there

are (at least) two very di�erent possible senarios related to the mass ordering:

m1 ≪ m2 < m3 (for NH) or m3 ≪ m1 < m2 (for IH).

The data on ∆m2
ij give the following estimates (heneforth

∑
mν ≡

∑3

i=1
mi):

{
m2 = (8.61± 0.122)× 10−3

eV,

m3 = (5.01± 0.027)× 10−2

eV,
=⇒

∑
mν ≥ m2 +m3 = 0.0587± 0.0003 eV (for NH) (9)

{
m2 = (4.99± 0.028) × 10−2

eV,

m1 = (4.92± 0.029) × 10−2

eV,
=⇒

∑
mν ≥ m1 +m1 = 0.0983± 0.0006 eV (for IH) (10)

Therefore, the lower bounds on

∑
mν at 1σ C.L. are:

∑
mNH

ν > 0.0584 eV and

∑
mIH

ν > 0.0977 eV.

Note: Current aelerator and reator data favor the NH senario, but the question is not yet losed.
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(3−5)σ determination of

neutrino mass hierarchy

in 3/4 years

& RENO-50

+ T2K

+ Reactor exp.
    (DB, RENO, DC,...)

(KM3NeT) (IceCube-Gen2)

Cosmology
After M.Blennow

A summary of sensitivities to the neutrino mass hierarhy for various experimental approahes, with

timesales, as laimed by the proponents in eah ase. Widths indiate main expeted unertainty.
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CνB.

Relit neutrinos (or Cosmi Neutrino Bakground, or CNB, or CνB) produe the largest neutrino �ux

on Earth, but ompose only a very small fration of invisible (non-luminous) matter in the Universe.

Dark Energy ~ 69%
[Cosmological Constant (?)]

Dark Matter ~ 26%
[presumably cold]

Neutrinos 0.1−0.3%
[Hot DM (?)]

Ordinary Matter ~ 5%
[of this only ~10% is luminous]

+ Radiation ~ 0.001%

Ω   = 0.685(7)Λ

Ω   = 0.265(7)c 

Ω     = 0.9993(19)tot 

Planck 2018  (TT, TE, EE + lowE + lensing) & BAO

0.0012 < Ω  < 0.003nΩ   = 0.0493(6)b 

Ω   = 0.315(7)m Nn
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CMB as a probe of CνB.

It is not yet realisti

to diretly detet the

νs reated within

the �rst seond after

the Big Bang, and

whih have too little

energy now. However,

for the �rst time,

Plank, ESA's mission

has unambiguously

deteted the e�et

CνB has on reli

radiation maps. The

quality of these maps

is now suh that the

imprints left by dark

matter and reli νs

are learly visible.

a
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a

See N. Aghanim et al. (Plank Collaboration), �Plank 2018 results. I. Overview and the osmologial

legay of Plank�, Astron. Astrophys. 641 (2020) A1, arXiv:1807.06205 [astro-ph.CO℄; �Plank 2018 results.

VI. Cosmologial parameters�, Astron. Astrophys. 641 (2020) A6, arXiv:1807.06209 [astro-ph.CO℄.
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The reli photon spetrum almost

exatly follows the blakbody

spetrum with temperature

T0 = 2.7255± 0.0006 K.

After many deades of experi-

mental and theoretial e�orts, the

CMB is known to be almost

isotropi but having small tem-

perature �utuations (alled CMB

anisotropy) with amplitude

δT ∼
(
10−5 − 10−3

)
.

These �utuations an be

deomposed in a sum of spherial

harmonis Ylm(θ, φ)

δT (θ, φ) =

∞∑

l=1

l∑

m=−l

almYlm(θ, φ).

The averaged squared oe�ients

alm give the variane

Cl = 〈|alm|2〉 =
1

2l + 1

l∑

m=−l

|alm|2.
CMB maps an be ompressed into the power spetrum

TT
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Plank 2018: neutrino summary.
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68% and 95% C.L. for the extra parameter vs. �ve other base-ΛCDM parameters. The dashed lines

indiate the ΛCDM best-�t parameters or �xed default values of the extended parameters.

[Adopted from Aghanim et al. (Plank Collaboration), �Plank 2018 results. I. Overview and the osmologial legay of

Plank�, Astron. Astrophys. 641 (2020) A1, arXiv:1807.06205 [astro-ph.CO℄;℄
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Finally Plank 2018 (+BAO) sets:

∑
mν < 0.12 eV, N

e�

= 2.99 ± 0.17, ∆N

e�

< 0.3.

Here N

e�

is the e�etive number or neutrino speies; roughly speaking, N

e�

≃ 3 means that

additional light neutrinos are not supported (although not exluded) by Plank.

But(!) this onstraint implies degenerate mass hierarhy (DH), mi =
∑

mν/3, and many other

model assumptions. Results for other ν mass spetra have been obtained reently (m0 ≡ mmin):
a

Let's reall the latest osillation lower limits:

∑
mNH

ν & 0.058 eV and

∑
mIH

ν & 0.098 eV.

a

Sh. R. Choudhury & S. Hannestad, �Updated results on neutrino mass and mass hierarhy from osmology

with Plank 2018 likelihoods,� JCAP07(2020)037, arXiv:1907.12598 [astro-ph.CO℄.
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Afterward: Open problems in neutrino physis.

• Are neutrinos Dira or Majorana fermions?

• What is the absolute mass sale of (known) neutrinos?

Why neutrino masses are so small? [Does any version of see-saw work?℄

What is the neutrino mass spetrum? [sign(∆m2
32) ⇐⇒ NH or IH.℄

Can the lightest neutrinos be massless fermions? [Not quasipartiles in Weyl semimetals!℄

• Why neutrino mixing is so di�erent from quark mixing?

What physis is responsible for the otant degeneray? [sign(θ23 − 45◦).℄

• What are the soure and sale of CP/T violation in the neutrino setor?

How many CP violating phases are there?

• Is CPT onserved in the neutrino setor?

• How many neutrino �avors are there?

• Whether the number of neutrinos with de�nite masses is equal to or greater than the

number of �avor neutrinos? In other words, do sterile neutrinos exist?

a

If so,

◦ What is their mass spetrum?

◦ Do they mix with ative neutrinos?

◦ Do light (heavy) sterile neutrinos onstitute hot (old) dark matter?

• Are (all) neutrinos stable partiles?

a

Hints from LSND+MiniBooNE, Neutrino-4, SAGE+GALLEX+BEST are in tension with many other data.
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