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1 Interation Lagrangian and weak urrents.

In the Standard Model (SM), the harged and neutral urrent neutrino interations with

leptons are desribed by the following parts of the full Lagrangian:

LCC

I (x) = − g

2
√

2
jCCα (x)Wα(x) + H.. and LNC

I (x) = − g

2 cos θ

W

jNCα (x)Zα(x).

Here g is the SU(2) (eletro-weak) gauge oupling onstant

g2 = 4
√

2m2
WGF , g sin θ

W

= |e|,

and θ

W

is the weak mixing (Weinberg) angle, (sin2 θ

W

(MZ) = 0.23120).

The leptoni harged urrent and neutrino neutral urrent are given by the expressions:

jCCα (x) = 2
∑

ℓ=e,µ,τ,...

νℓ,L(x)γαℓL(x) and jNCα (x) =
∑

ℓ=e,µ,τ,...

νℓ,L(x)γανℓ,L(x).

Phenomenologially, the harged and neutral urrents may inlude (yet unknown) heavy

neutrinos and orresponding heavy harged leptons. The left- and right-handed fermion �elds

are de�ned as usually:





νℓ,L(x) = PLνℓ(x), ℓL(x) = PLℓ(x), PL ≡ 1

2
(1 − γ5),

νℓ,R(x) = PRνℓ(x), ℓL(x) = PRℓ(x), PR ≡ 1

2
(1 + γ5).
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Physial meaning of hiral projetions for a massive Dira fermion.

(p̂−m)ψ = 0 =⇒
(
p0 −m −pσ

pσ −p0 −m

)(
φ

χ

)
= 0 =⇒

{
(pσ)χ = (p0 −m)φ,

(pσ)φ = (p0 +m)χ.

⇓

ψL = PLψ =
1

2

(
φ− χ
χ− φ

)
=

(
φ−

−φ−

)

ψR = PRψ =
1

2

(
φ+ χ

φ+ χ

)
=

(
φ+

φ+

) where φ± =
1

2

(
1± pσ

p0 +m

)
φ.

Let p0 ≫ m and thus 1− |v| ≪ 1, where v = p/p0. Then, direting v along the z axis we obtain

φ− ≃ 1− σ3

2
φ =

(
0 0

0 1

)(
φ→

φ←

)
=

(
0

φ←

)
, φ+ ≃ 1 + σ3

2
φ =

(
1 0

0 0

)(
φ→

φ←

)
=

(
φ→

0

)
.

Reminder: Pauli & Dira matries

σ0 ≡ 1 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
.

γ0 = γ0 =

(
σ0 0

0 −σ0

)
, γk = −γk =

(
0 σk

−σk 0

)
, k = 1, 2, 3, γ5 = γ5 =

(
0 σ0

σ0 0

)
.
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Note that the kineti term of the Lagrangian inludes both L and R handed neutrinos and moreover,

it an inlude other sterile neutrinos:

L0 =
i

2
[ν(x)γα∂αν(x)− ∂αν(x)γαν(x)] ≡ i

2
ν(x)
←→
∂ ν(x) =

i

2

[
νL(x)

←→
∂ νL(x) + νR(x)

←→
∂ νR(x)

]
,

ν(x) = νL(x) + νR(x) =




νe(x)

νµ(x)

ντ (x)

.

.

.




, νL/R(x) =




νe,L/R(x)

νµ,L/R(x)

ντ,L/R(x)

.

.

.




=
1∓ γ5

2




νe(x)

νµ(x)

ντ (x)

.

.

.




.

Neutrino hirality: γ5νL = −νL and γ5νR = +νR.

The Lagrangian of the theory with massless neutrinos is invariant with respet to the global gauge

transformations

νℓ(x)→ eiΛℓνℓ(x), ℓ(x)→ eiΛℓℓ(x) with Λℓ = onst.

By Noether's theorem this leads to onservation of the individual lepton �avor numbers (more rarely

alled lepton �avor harges) Lℓ. It is agreed that

Lℓ(ℓ−, νℓ) = +1, Lℓ(ℓ+, νℓ) = −1, ℓ± = e±, µ±, τ±, et.

Lepton �avor onservation is not the ase for massive neutrinos.

There are two fundamentally di�erent kinds of neutrino mass terms: Dira and Majorana.
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2 Dira neutrinos

The onventional Dira mass term for a single spinor �eld ψ(x) is well known:

−mψ(x)ψ(x) = −m
[
ψRψL + ψLψR

]
= −mψR(x)ψL(x) + H..

(the identities ψLψL = ψRψR = 0 and (ψRψL)† = ψLψR are used here).

The most general extension to the N -generation Dira neutrino ase reads:

L

D

(x) = −νR(x)M

D

νL(x) + H..,

where M

D

is a nonsingular [to exlude massless ase℄ omplexN ×N matrix.

In general, N ≥ 3 sine the olumn νL may inlude both ative and sterile

neutrino �elds whih do not enter into the standard harged and neutral urrents.

Any nonsingular omplex matrix an be diagonalized by means of an appropriate bi-unitary

transformation

M

D

= ṼmV
†, m = ||mkδkl|| = diag (m1,m2, . . . ,mN ),

where V and Ṽ are unitary matries and mk ≥ 0.
=⇒ L

D

(x) = −ν ′R(x)mν′L(x) + H.. = −ν′(x)mν′(x) = −
N∑

k=1

mkνk(x)νk(x),

where the new �elds νk are de�ned by

ν ′L(x) = V
†νL(x), ν′R(x) = Ṽ

†νR(x), ν ′(x) = (ν1, ν2, . . . , νN )T .

The �elds ν′R(x) do not enter into LI =⇒ the matrix Ṽ remains out of play...
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Sine VV† = V†V = 1 and Ṽ†Ṽ = ṼṼ† = 1, the neutrino kineti term in the Lagrangian is

transformed to

L0 =
i

2

[
ν′L(x)

←→
∂ ν′L(x) + ν′R(x)

←→
∂ ν ′R(x)

]
=
i

2
ν′(x)

←→
∂ ν ′(x) =

i

2

∑

k

νk(x)
←→
∂ νk(x).

⇓

νk(x) is the �eld of a Dira neutrino with the mass mk and the �avor LH neutrino �elds νℓ,L(x)

involved into the SM weak lepton urrents are linear ombinations of the LH omponents of the

�elds of the neutrinos with de�nite masses:

νL = Vν ′L or νℓ,L =
∑

k

Vℓkνk,L.

The matrix V is referred to as the Ponteorvo-Maki-Nakagawa-Sakata (PMNS) neutrino mixing

matrix while the matrix Ṽ is not honored with a personal name.

Quark-lepton omplementarity (QLC): Of ourse the PMNS matrix it is not the same as the CKM

(Cabibbo-Kobayashi-Maskawa) quark mixing matrix. However the PMNS and CKM matries may be,

in a sense, omplementary to eah other.

The QLC means that in the same (PDG) parametrizations the sums of (small) quark and (large) lepton

mixing angles are almost (i.e., within errors) equal to π/4 for (ij) = (12) and (23):

θCKM12 + θPMNS

12 = (46.49 ± 0.77)◦, θCKM23 + θPMNS

23 = (44.48 ± 1.10)◦, sum = (90.97 ± 1.34)◦.

The origin of the data (but not QLC) will be explained below.
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2.1 Parametrization of mixing matrix for Dira neutrinos.

It is well known that a omplex n× n unitary matrix depends on n2

real parameters.

The lassial result by Franis Murnaghan [F. D. Murnaghan, �The unitary and rotation groups (Letures on

Applied Mathematis, Volume 3),� Spartan Books, Washington, D.C. (1962)℄ states that any n× n matrix from

the unitary group U(n) an be presented as produt of the diagonal phase matrix

Γ = diag

(
eiα1 , eiα2 , . . . , eiαn

)
,

ontaining n phases αk, and n(n− 1)/2 matries U whose main building bloks have the form

(
cos θ sin θ e−iφ

− sin θ e+iφ cos θ

)
=

(
1 0

0 e+iφ

)(
cos θ sin θ

− sin θ cos θ

)

︸ ︷︷ ︸
Euler rotation

(
1 0

0 e−iφ

)
.

Therefore any n× n unitary matrix an be parametrized in terms of

n(n− 1)/2 �angles� (taking values within [0, π/2])

and

n(n+ 1)/2 �phases� (taking values within [0, 2π)).

The usual parametrization of both the CKM and PMNS matries is of this type.

IMPORTANT: Murnaghan's fatorization method does not speify the sequene of the

building bloks Γ and U.
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One an redue the number of the phases further by taking into aount that the Lagrangian with

the Dira mass term is invariant with respet to the transformation

ℓ 7→ eiaℓℓ, νk 7→ eibkνk, Vℓk 7→ ei(bk−aℓ)Vℓk,

and to the global gauge transformation

ℓ 7→ eiΛℓ, νk 7→ eiΛνk, with Λ = onst. (1)

Therefore 2N − 1 phases are unphysial and the number of physial (Dira) phases is

n

D

=
N(N + 1)

2
− (2N − 1) =

N2 − 3N + 2

2
=

(N − 1)(N − 2)

2
(N ≥ 2);

n

D

(2) = 0, n

D

(3) = 1, n

D

(4) = 3, . . .

• The global symmetry (1) leads to onservation of the lepton harge

L =
∑

ℓ=e,µ,τ,...

Lℓ

ommon to all harged leptons and all neutrinos νk. However

The individual lepton �avor numbers Lℓ are no longer onserved.

• The nonzero physial phases lead to the CP (and T ) violation in the neutrino setor.

a

This ould

have important impliations for partile physis and osmology (leptogenesis, baryogenesis,...).

a

The proof an be found, e.g., in Se. 4.6 of C. Giunti and C. W. Kim, �Fundamentals of neutrino physis

and astrophysis� (Oxford University Press In., New York, 2007) or in Se. 6.3 of S. M. Bilenky, �Introdution

to the physis of massive and mixed neutrinos� (2nd ed.), Let. Notes Phys. 947 (2018) 1�276. Note the

di�erenes in notation and in representation for the matrix C.
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2.1.1 Three-neutrino ase.

In the most interesting (today!) ase of three lepton generations one de�nes the orthogonal rotation

matries in the ij-planes whih depend upon the mixing angles θij :

O12 =




c12 s12 0

−s12 c12 0

0 0 1




︸ ︷︷ ︸

Solar matrix

, O13 =




c13 0 s13

0 1 0

−s13 0 c13




︸ ︷︷ ︸

Reator matrix

, O23 =




1 0 0

0 c23 s23

0 −s23 c23




︸ ︷︷ ︸

Atmospheri matrix

,

(where cij ≡ cos θij , sij ≡ sin θij) and the diagonal matrix with the Dira phase fator:

Γ

D

= diag

(
1, 1, eiδ

)
.

The parameter δ is ommonly referred to as the Dira CP -violation/violating phase.

Finally, by applying Murnaghan's fatorization, the PMNS matrix for the Dira neutrinos an be

parametrized as

V

(D)

= O23Γ

D

O13Γ †

D

O12 =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


 .

⋆ This is the Chau�Keung presentation advoated by the PDG for both CKM and PMNS matries.

⋆ Remember that the positioning of the fators in V

(D)

is not �xed by the Murnaghan (or any other)

algorithm and is just a subjet-matter of agreement.

⋆ Today we believe we know a lot about the entries of this matrix.
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2.1.2 Lepton numbers are not onserved, so what of it?.

Sine the Dira mass term violates onservation of the individual lepton numbers, Le, Lµ, Lτ , it

allows many lepton family number violating proesses, like

µ± → e± + γ, µ± → e± + e+ + e−,

K+ → π+ + µ± + e∓, K− → π− + µ± + e∓,

µ− + (A,Z)→ e− + (A,Z), τ− + (A,Z)→ µ− + (A,Z), . . .

However the (ββ)0ν deay or the kaon semileptoni deays like

K+ → π− + µ+ + e+, K− → π+ + µ− + e−,

et. are still forbidden as a onsequene of the total lepton harge onservation.

Current limits on the simplest lepton family number violating µ and τ deays (2020).

a

Deay Modes Fration C.L. Deay Modes Fration C.L.

µ− → e−νeνµ < 1.2% 90% τ− → e−γ < 3.3× 10−8

90%

µ− → e−γ < 4.2× 10−13

90% τ− → µ−γ < 4.4× 10−8

90%

µ− → e−e+e− < 1.0× 10−12

90% τ− → e−π0 < 8.0× 10−8

90%

µ− → e−2γ < 7.2× 10−11
90% τ− → µ−π0 < 1.1× 10−7

90%

These limits are not quite as impressive as might appear at �rst glane.

a

P. A. Zyla et al. (Partile Data Group), �Review of Partile Physis�, PTEP 2020 (2020) 083C01.

16



History & future of
   LFV experiments

1940 1960 1980 2000 2020 Year

90
%

–C
.L

. 
b
ou

n
d
 

10–14
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10–10

10–8
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10–4

10–2

100

µ eγ

µ 3e

µN eN

τ eγ

τ 3µ10–16

SINDRUM SINDRUM II

MEG

MEG II

Mu3e I

Mu3e II

Comet II/Mu2e

DeeMee/
Comet I

Pontecorvo (1947)

[From N. Berger, �Charged lepton �avour violation experiments,� talk at the Z�urih Phenomenology Workshop, January

2015. For details, see W. J. Mariano, T. Mori, and J. M. Roney, �Charged lepton �avor violation experiments,� Ann.

Rev. Nul. Part. Si. 58 (2008) 315�341. Is not yet updated!℄
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2.1.3 Neutrinoless muon deay in SM.

The Lµ and Le violating muon deay µ− → e−γ is

allowed if V ∗µkVek 6= 0 for k = 1, 2 or 3. The orresponding

Feynman diagrams inlude W loops and thus the deay

width is strongly suppressed by the neutrino to W boson

mass ratios:

R =
Γ
(
µ− → e−γ

)

Γ (µ− → e−νµνe)
=

3α

32π

∣∣∣∣∣
∑

k

V ∗µkVek
m2

k

m2
W

∣∣∣∣∣

2

.

Sine mk/mW ≈ 1.244× 10−12 (mk/0.1 eV), the ratio

an be estimated as

R ≈ 5.22× 10−52

∣∣∣∣∣
∑

k

V ∗µkVek

(
mk

0.1 eV

)2

∣∣∣∣∣

2

. 8× 10−54,

while the urrent experimental upper limit is (at least!) 40

orders of magnitude larger (see Table in p. 16):

R

(exp)

< 4.2× 10−13

at 90% C.L. (NO GO!)

Some nonstandard models are muh more optimisti.

We must deeply appreiate the osillation phenomenon

whih makes the miserable ν mass e�et measurable.

W W

γ

µ eν
kV

µk Vek

∗

Wγ

µ eν
kV

µk Vek

∗

W γ

µ eν
kV

µk Vek

∗
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2.2 Nulear beta deay.

The method of measurement of the (anti)neutrino mass through the investigation of the high-energy

part of the β-spetrum was proposed by Perrin (1933) and Fermi (1934).

The �rst experiments on the measurement of the neutrino mass with this method have been done by

Curran, Angus and Cokroft (1948) and Hanna and Ponteorvo (1949).

The energy spetrum of eletrons in the deay (A,Z)→ (A,Z + 1) + e− + νe is

a

dΓ

dT
=
∑

k

|Vek|2 dΓk

dT
, (2)

dΓk

dT
=

(GF cos θC)2

2π3
ppk (T +me) (Q− T ) |M|2 F (T, Z)θ (Q− T −mk). (3)

Here GF is the Fermi onstant, θC is the Cabibbo angle, me, p and T are the mass, magnitude of

the momentum and kineti energy of the eletron, respetively,

pk =
√
E2

k −m2
k =

√
(Q− T )2 −m2

k and Q = Ek + T = EA,Z −EA,Z+1 −me

are, respetively, the magnitude of the neutrino momentum and energy released in the deay (the

endpoint of the β spetrum in ase mk = 0),M is the nulear matrix element, and F (T, Z) is the

Fermi funtion, whih desribes the Coulomb interation of the �nal-state nuleus and eletron.

The step funtion in Eq. (3) ensures that a neutrino state νk is only produed if its total energy is

larger than its mass: Ek = Q− T ≥ mk.

a

The reoil of the �nal nuleus and radiative orretions (lukily small) are negleted.
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As it is seen from Eq. (2), the largest distortion of the β-spetrum due to neutrino masses an be

observed in the region

Q− T ∼ mk. (4)

However, for max (mk) ≃ 0.1 eV only a very small part (about 10−(13−14)

) of the deays give

ontribution to the region (4). This is the reason why in the analysis of the results of the

measurement of the β-spetrum a relatively large part of the spetrum is used.

a

Taking this into aount and applying unitarity of the mixing matrix, we an write

∑

k

|Vek|2 pk ≈
∑

k

|Vek|2 (Q− T )

[
1− m2

k

2(Q− T )2

]
⇐= 4E2

k ≫ m2
k

= (Q− T )

[
1− 1

2(Q− T )2

∑

k

|Vek|2 m2
k

]
⇐=

∑

k

|Vek|2 = 1

≈
√

(Q− T )2 −m2
β ,

where the e�etive neutrino mass mβ is de�ned by

m2
β =

∑

k

|Vek|2 m2
k

and it was assumed that

max
k

(
m2

k

)
≪ 4(Q− T )2.

a

For example, in the Mainz tritium experiment (see below) the last 70 eV of the spetrum is used.
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Finally, the β-spetrum that is used for �tting

the data an be presented as

dΓ

dT
∝ p (T +me) |M|2 F (T )K2(T ),

where we have de�ned the Kurie funtion

(sometimes alled Fermi-Kurie funtion)

K(T )∝
√

dΓ/dT

p (T +me) |M|2 F (T )

≈ (Q− T )

[
1− m2

β

(Q− T )2

]1/4

developed by Franz Newell Devereux Kurie.

Unfortunately, the real-life situation is

muh more ompliated.

Kurie plot for allowed proesses is a sensitive test of mβ ,

while the �rst order forbidden proesses should have a

distorted Kurie plot.

In an atual experiment, the measurable quantity is a sum of β spetra, leading eah with probability

Pn = Pn(E0 − Vn − E) to a �nal state n of exitation energy Vn:

dΓ (T,Q)

dT
7−→

∑

n

Pn (E0 − Vn −E)
dΓ (T,E0 − Vn)

dT
.

Here E0 = Q− E the ground-state energy and E is the reoil energy of the daughter nuleus.
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2.2.1 Tritium beta deay.

An important issue is the deay of

moleular tritium T2 →
(

3

HeT

)+
+ e− + νe.

Considering the most preise diret

determination of the mass di�erene

m(T)−m
(

3

He

)
= (18590.1± 1.7) eV/c2

and taking into aount the reoil and

apparative e�ets (these are taken for the

Mainz experiment) one derives an endpoint

energy of the moleular ion

(
3

HeT

)+

ground

state:

E0 = (18574.3± 1.7) eV.

The exitation spetrum is shown in the

�gure. The �rst group onerns rotational and

vibrational exitation of the moleule in its

eletroni ground state; it omprises a fration

of Pg = 57.4% of the total rate.

Exitation spetrum of the daughter moleular ion(
3

HeT

)+

in β deay of moleular tritium.

For more details, see C. Kraus et al., �Final results from phase II of the Mainz neutrino mass searh in tritium

β deay,� Eur. Phys. J. C 40 (2005) 447�468, hep-ex/0412056.
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m
  
 (

eV
/c

  
)

2
β

Publ. year

Curran, Angus & Cockroft

Hanna & Pontecorvo

Langer & Moffat
Hamilton, Alford & Gross

Bergkvist

ITEP (1)

ITEP (2)

Zurich

INS (Tokyo)
Los Alamos

Mainz

Troitsk

Troitsk
Mainz Troitsk

Karlsruhe

arXiv:1909.06048 [hep-ex]

KATRIN

© 1948 Nature Publ. Group

Nature 162 (1948) 302-303

Progress of the neutrino mass measurements in

tritium β deay, inluding the �nal Mainz phase II,

Troitsk, and KATRIN upper limits (see below).

[The ompilation is taken from V. M. Lobashev, �Diret searh

for mass of neutrino,� in Proeedings of the 18th International

Conferene on Physis in Collision (�PIC 98�), Frasati, June 17�

19, 1998, pp. 179�194 and supplemented with the reent data.℄

⊳ The history of the searh for the

neutrino mass in the tritium β deay

ounts more than 60 years. In 1980,

the steady improvement of the upper

limit was suddenly speeded up by a

report of the ITEP group (Mosow)

on the observation of the nonzero

neutrino mass e�et in the β-spetrum

in the valine moleule (C5H9T2NO2).

The reported result was

a

14 ≤ mβ ≤ 46 eV/c2 (99% C.L.)

This researh stimulated more than

20 experimental proposals with an

intention to hek this lime. Alas!. . .
in several years the experimental groups

from Z�urih, Tokyo, Los Alamos, and

then Livermore refuted the ITEP result.

a

V. A. Lyubimov, E. G. Novikov,

V. Z. Nozik, E. F. Tretyakov, and V. S. Kosik,

�An estimate of the νe mass from the β-

spetrum of tritium in the valine moleule,�

Phys. Lett. B 94 (1980) 266�268 (∼ 500

itations in InSPIRE! by the end of 2021).
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The top �gure shows the data points

from the tail of the β-spetrum measured

in the Los Alamos tritium experiment

ompared with the expeted values (the

straight line) for mβ = 30 eV. The data

wander from the line, ruling out the

possibility of a 30-eV neutrino.

The bottom �gure shows the same data

points ompared with the expetation for

mβ = 0. While the data learly favor a

neutrino mass of zero, the best �t is

atually for a slightly negativemβ . (Note

that in the bottom plot, the data points

lie, on average, slightly above the line, so

this is not a perfet �t.)

Both plots display �residuals,� whih

indiate how many standard deviations

eah data point is from a partiular

hypothesis.
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Did the neutrino weigh 30 eletron volts?

[Borrowed from T. J. Bowles and R. G. H. Robertson, �Tritium beta deay and the searh for neutrino mass,� Los

Alamos Si. 25 (1997) 6�11.℄
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Publ. year

2
m

  
 (

eV
 /

c
  

)
2

4

β
PHYSICAL SECTOR

Mainz 1998-2001 final (2005):

m  = -0.6   2.2       2.1     eV /c
β

Troitsk 1994-2004 reanalised (2011):

m  = -0.67   1.89       1.68     eV /c
β

2+
−  stat syst

+
−

4

2+
−  stat syst

+
−

4

2

2

Bejing

Livermore
Los Alamos
Mainz
Tokyo
Troitsk
Troitsk (step fcn)
Troitsk (reanalized)
Zurich..

~~
~~

KATRIN

KATRIN 2nd compaign (2021):

m  = 0.26   0.34 eV /c 
β

2 42 +
− At last!

KATRIN 2021

⊳ The �gure shows the results on them2
β

measurements in the tritium β deay

experiments reported after 1990.

The already �nished experiments at

Los Alamos, Z�urih, Tokyo, Beijing and

Livermore used magneti spetrometers,

while the experiments at Troitsk (ν mass),

Mainz, and Karlsruhe (KATRIN) are using

high-resolution eletrostati �lters with

magneti adiabati ollimation.

The progress in the observable mβ of

the latest Mainz, Troitsk, and KATRIN

results as ompared to the most sensitive

earlier experiments approahes two orders

of magnitude.

[The �gure in this slide inludes the data from C. Kraus et al., Eur. Phys. J. C 40 (2005) 447�468, hep-ex/0412056;

V. N. Aseev et al., Phys. Rev. D 84 (2011) 112003, arXiv:1108.5034 [hep-ex℄; M. Aker et al., Phys. Rev. Lett. 123

(2019) 221802, arXiv:1909.06048 [hep-ex℄ M. Aker et al., arXiv:2105.08533 [hep-ex℄. ℄

The negative m2
β most probably was �instrumental�. After KATRIN (2021), only a very small spae remains

for fans of heterodox models with tahyoni neutrino states (more generally � superpositions of bradyon-luxon-

tahyon states), pseudotahyoni (m2
ν < 0, v = E/p), or perhaps superbradyoni (mν > 0, v > 1) neutrinos.

25



2.2.2 Summary of the KATRIN result from the �rst siene run (KNM1).

The best �t value of the e�etive neutrino mass square was found to be

a

m2
β =

(
−1.0+0.9

−1.1

)

eV

2.

This result orresponds to a 1σ statistial

�utuation to negative values of m2
β

possessing a p-value of 0.16. The total

unertainty budget of m2
β is largely dominated

by σ

stat

(0.97 eV

2

) as ompared to σ

syst

(0.32 eV

2

). These unertainties are smaller by

a fator of 2 and 6, respetively, ompared to

the �nal results of Troitsk and Mainz.

KATRIN data with 1σ errorbars   50 

Fit result

18535               18555               18575                18595               18615

Retarding energy (eV)

C
ou

n
t 

ra
te

 (
cp

s)

1

10

Spectrum of electrons over a 90 eV-wide interval
from all 274 tritium scans and best-fit model

The methods of Lokhov and Tkahov (LT) and of Feldman and Cousins (FC) are then used to

alulate the upper limit on the absolute mass sale of neutrino:

mβ < 1.1 eV at 90% C.L. (LT), mβ < 0.8 (0.9) eV at 90 (95)% C.L. (FC).

The LT value (the entral result of the experiment) oinides with the KATRIN sensitivity. It is based

on a purely kinemati method and improves upon previous works by almost a fator of two after a

measuring period of only four weeks while operating at redued olumn density.

After 1000 days of data taking at nominal olumn density and further redutions of systematis the

Karlsruhe Tritium Neutrino experiment KATRIN will reah a sensitivity of 0.2 eV (90% C.L.) on mβ .

a

M. Aker et al., �An improved upper limit on the neutrino mass from a diret kinemati method by KATRIN,�

Phys. Rev. Lett. 123 (2019) 221802, arXiv:1909.06048 [hep-ex℄.
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2.2.3 Summary of the KATRIN result from the seond siene run (KNM2).

In the 2nd physis run, the soure ativity was inreased by a fator of 3.8 and the bakground was

redued by 25% with respet to the 1st ampaign.

a

A sensitivity on mβ of 0.7 eV at 90% C.L. was

reahed. This is the �rst sub-eV sensitivity from a diret neutrino-mass experiment.

β

P
H

Y
S
IC

A
L
 S

E
C

T
O

R
The best �t to the spetral data yields

mβ = 0.26± 0.34 eV, resulting in an upper

limit of mβ < 0.9 eV (90% C.L.), using

the Lokhov-Tkahov method. The Feldman-

Cousins tehnique yields the same limit. The

resulting Bayesian limit at 90% C.L. is

mβ < 0.85 eV.

A simultaneous �t of both KNM1 and KNM2

data sets yieldsmβ = 0.1± 0.3 eV, resulting an

improved limit of mβ < 0.8 eV (90% C.L.).

As both data sets are statistis-dominated,

orrelated systemati unertainties between

both ampaigns are negligible.

⊳ The �gure displays the evolution of

best-�t mβ results from historial ν-mass

measurements (.f. p. 25).

mβ < 0.9 eV at 90 % C.L. (KNM2), mβ < 0.8 eV at 90 % C.L. (KNM1+KNM2).

a

M. Aker et al., �First diret neutrino-mass measurement with sub-eV sensitivity�, Nature Phys. 18 (2022)

160�166, arXiv:2105.08533 [hep-ex℄; see also arXiv:2203.08059 [nul-ex℄, submitted to Nature Physis.
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3 Majorana neutrinos.

The harge onjugated bispinor �eld ψc

is de�ned by the transformation

ψ 7−→ ψc = CψT , ψ 7−→ ψc = −ψTC,

where C is the harge-onjugation matrix whih satis�es the onditions

CγT
αC
† = −γα, CγT

5 C
† = γ5, C† = C−1 = C, CT = −C,

and thus oinides (up to a phase fator) with the inversion of the axes x0

and x2: C = γ0γ2.

Clearly the harged fermion �eld ψ is di�erent from the harge-onjugated

�eld ψc

but a neutral fermion �eld ν an oinide with the harge-onjugated one νc

. In other words:

for a neutral fermion (neutrino, neutralino) �eld ν(x) the following ondition is not forbidden:

a

νc(x) = ν(x) (Majorana ondition) ⇐⇒ Majorana neutrino and antineutrino oinide!

A few more details: In the hiral representation

ν =

(
φ

χ

)
, νc = CνT =

(
−σ2χ∗

+σ2φ∗

)
. =⇒

{
φ = −σ2χ

∗,

χ = +σ2φ
∗ =⇒ φ+ χ = σ2 (φ− χ)∗.

The Majorana neutrino is two-omponent, i.e., it is de�ned by only one hiral projetion. Then (.f. p. 9)

νL = PLν =

(
φ− χ

χ− φ

)

and νR = PRν =

(
φ+ χ

φ+ χ

)
= νc

L. =⇒ ν = νL + νR = νL + νc
L.

a

The simplest generalization of the Majorana ondition, νc(x) = eiϕν(x) (ϕ = onst), is not very interesting.
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The Majorana mass term in the general N -neutrino ase is [Gribov & Ponteorvo (1969)℄:

L

M

(x) = −1

2
νc

L(x)M

M

νL(x) + H..,

Here M

M

is a N ×N omplex nondiagonal matrix and, in general, N ≥ 3.

It an be proved that the M

M

should be symmetri, M
T

M

= M

M

. Assuming for simpliity that its

spetrum is non-degenerated, the mass matrix an be diagonalized by means of the following

transformation [Bilenky & Petov (1987)℄

M

M

= V
∗
mV

†, m = ||mkδkl|| = diag (m1,m2, . . . ,mN ),

where V is a unitary matrix and mk ≥ 0. Therefore

L

M

(x) = −1

2

[
(ν′L)c

mν ′L + ν ′Lm(ν′L)c
]

= −1

2
ν′mν′ = −1

2

N∑

k=1

mkνkνk,

ν ′L = V
†νL, (ν′L)c = C

(
ν′L
)

T , ν′ = ν′L + (ν′L)c.

The last equality means that the �elds νk(x) are Majorana neutrino �elds. Considering that the

kineti term in the neutrino Lagrangian is transformed to

a

L0 =
i

2
ν ′(x)

←→
∂ ν′(x) =

i

2

∑

k

νk(x)
←→
∂ νk(x),

one an onlude that νk(x) is the �eld with the de�nite mass mk.

a

This also explains the origin of the fator 1/2 in the Majorana mass term.
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The �avor LH neutrino �elds νℓ,L(x) present in the standard weak lepton urrents are linear

ombinations of the LH omponents of the �elds of neutrinos with de�nite masses:

νL = Vν′
L or νℓ,L =

∑

k

Vℓkνk,L.

Of ourse neutrino mixing matrix V is not the same as in the ase of Dira neutrinos.

There is no global gauge transformations under whih the Majorana mass term (in its most

general form) ould be invariant. This implies that there are no onserved lepton harges that

ould allow us to distinguish Majorana νs and νs. In other words,

Majorana neutrinos are truly neutral fermions.

3.1 Parametrization of mixing matrix for Majorana neutrinos.

Sine the Majorana neutrinos are not rephasable, there may be a lot of extra phase fators in

the mixing matrix. The Lagrangian with the Majorana mass term is invariant with respet to

the transformation

ℓ 7→ eiaℓℓ, Vℓk 7→ e−iaℓVℓk
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Therefore N phases are unphysial and the number of the physial phases now is

N(N + 1)

2
−N =

N(N − 1)

2
=

(N − 1)(N − 2)

2︸ ︷︷ ︸

Dira phases

+ (N − 1)︸ ︷︷ ︸

Majorana phases

= n

D

+ n

M

;

n

M

(2) = 1, n

M

(3) = 2, n

M

(4) = 3, . . .

In fat all phases are Majorana and the above notation is provisional and unorthodox.

In the ase of three lepton generations one de�nes the diagonal matrix with the extra phase fators:

Γ

M

= diag

(
eiα1/2, eiα2/2, 1

)
, where α1,2 are ommonly referred to as the Majorana CP -violation

phases. Then the PMNS matrix an be parametrized as

V

(M)

= O23Γ

D

O13Γ †

D

O12Γ

M

= V

(D)

Γ

M

=




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13






eiα1/2 0 0

0 eiα2/2 0

0 0 1


 ,

Neither Lℓ nor L =
∑

ℓ
Lℓ is now onserved allowing a lot of new proesses, for example,

τ− → e+(µ+)π−π−, τ− → e+(µ+)π−K−, π− → µ+νe, K+ → π−µ+e+

, K+ → π0e+νe,

D+ → K−µ+µ+

, B+ → K−e+µ+

, Ξ− → pµ−µ−, Λ+
c → Σ−µ+µ+

, et.

Needless to say that no one was disovered yet [see RPP℄ but (may be!?) the (ββ)0ν deay.

The following setion will disuss this issue with some detail.
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3.2 Neutrinoless double beta deay.

The theory with Majorana neutrinos allows the deay

(A,Z)→ (A,Z + 2) + 2e− [0νββ ≡ (ββ)0ν ]

with ∆L = 2. The deay rate for this proess is expressed as

follows:

[
T 0ν

1/2

]−1
= G0ν

Z |mββ |2
∣∣M0ν

F

− (gA/gV )2M0ν

GT

∣∣2,

where G0ν
Z is the two-body phase-spae fator inluding

oupling onstant, M0ν

F/GT

are the Fermi/Gamow-Teller

nulear matrix elements. The onstants gV and gA are the

vetor and axial-vetor relative weak oupling onstants,

respetively. The omplex parameter mββ is the e�etive

Majorana eletron neutrino mass given by

mββ =
∑

k

V 2
ekmk =

∑

k

|Vek|2eiφkmk

= |Ve1|2 m1 + |Ve2|2 m2e
iφ2 + |Ve3|2 m3e

iφ3 .

Here φ1 = 0, φ2 = α2 − α1 (pure Majorana phase) and

φ3 = −(α2 + 2δ) (mixture of Dira and Majorana CP -

violation phases).
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The eletron sum energy spetrum

of the (ββ)2ν mode as well as of

the exoti modes with one or two

majorons in �nal state,

(A,Z)→ (A,Z + 2) + 2e− + χ,

(A,Z)→ (A,Z + 2) + 2e− + 2χ,

is ontinuous beause the available

energy release (Qββ) is shared

between the eletrons and other �nal

state partiles. In ontrast, the two

eletrons from the (ββ)0ν deay arry

the full available energy, and hene

the eletron sum energy spetrum

has a sharp peak at the Qββ value.

This feature allows one to distinguish

the (ββ)0ν deay signal from the

bakground.

The eletron sum energy spetra alulated for the di�erent

β deay modes of admium-116.

[From Y. Zdesenko, �Colloquium: The future of double beta deay

researh,� Rev. Mod. Phys. 74 (2003) 663�684.℄

Majoron is a Nambu-Goldstone boson, � a hypothetial neutral pseudosalar zero-mass partile whih ouples

to Majorana neutrinos and may be emitted in the neutrinoless β deay. It is a onsequene of the spontaneous

breaking of the global B − L symmetry.
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The urrently allowed ranges of

mββ observables of 0νββ deay is

shown as a funtion of the lightest

neutrino mass m0. In the ase of

normal (inverted) mass ordering the

ranges are shown by green (blue)

olor. The light (dark) olored

regions are omputed by taking into

aount (without taking aount)

the urrent 1σ unertainties of the

relevant mixing parameters.

Also shown are the limits on mββ

oming from KamLAND-Zen and

EXO-200 (by the light brown band

and arrow) and the bounds on m0

obtained by Plank.
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Note that the �KamLAND-Zen+EXO200� bound spans a broad band (rather than a line) beause of

the nulear matrix element unertainty.

It is remarkable that the e�et of the 1σ unertainties of the mixing parameters is quite small. In

ontrast, variation over the Majorana phases gives muh larger impat on allowed region of mββ , not

only produing sizeable width but also reating a down-going branh at 10−3

eV . m0 . 10−2

eV for

the ase of the normal mass ordering due to the strong anellation of the three mass terms.

[From H. Minakata, H. Nunokawa, and A. A. Quiroga, �Constraining Majorana CP phase in the preision era of

osmology and the double beta deay experiment,� PTEP 2015 (2015) 033B03, arXiv:1402.6014 [hep-ph℄.℄
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