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Systems with self-organised criticality & turbulence

What is interesting in models of self-organized criticality (SOC)?

m they are open nonequilibrium systems with dissipative transport;
m they are believed to be ubiquitous in nature [1];

m they arrive at their critical states due to their intrinsic dynamics, i.e. they have no tuning
parameter.

Self-organised critical systems under the influence of turbulence can be studied by renormalization group
method!

Figure: The SOC models are often found in nature

Purpose of the study (2)

The goal of our research is to study universality classes (types of critical behavior) of a system with
self-organised criticality described by anisotropic continuos model of a "running sandpile” [2] while
taking into account turbulent motion of the environment.

The method (3)

Stochastic problem — Field theoretic formulation (the De Dominicis-Janssen action functional [3] —
Analysis of canonical dimensions — Feynman diagrams calculation — Renormalization equations —
Critical exponents

Description of the model (4)

The model of a self-organised critical system behavior is continuous equation for height transport
with strong anisotropy (the Hwa-Kardar equation — HK) [2]:

oh=v, aih + aﬁh — 8||h2/2 + f. (D)

m h is a height of the profile; v, v > 0 are viscosity coefficients;

® X=X, +nr|, [n| =1,x,n = 0,dis the dimension of the x space, J,, J are transverse and
longitudinal derivatives respectively;

m f = f(x)is the Gaussian random noise with zero mean:
(Fl)f(a')) = Cod(t — )50 (x — ) Cy = g}

The turbulent motion of the environment is modeled by the Navier-Stokes equation with an external
random force (isotropic incompressible viscous fluid):

875@2- + (’U . 8)’02 = VoaQ’Ui — 8ZP + ;. (2)

P is the pressure, n; is the transverse external random force per unit mass, 1 is the kinematic
coefficient of viscosity. 7, is a Gaussian statistics with zero mean, prescribed pair covariance with
vanishing correlation time:
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where P,;(k) = §;; — k;k;/k* is the transverse projector,

dy(k) = Dy + Dok*~ ¢
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m Also the velocity field v;(x) is introduced by the replacement 0;h — V;h = 9;h + (v;0;)h.
m Jv; = 0; Dy, Dy > 0 are amplitude factors.

Field theoretic formulation of the model

The stochastic problem (1) is equivalent to the field theoretic model with the action functional
S{h,h',v} = Coh'I |2+ Dyv'v' /2 + W {—0ih — (vO)h + V”Oﬁﬁh +v1007 h—0)h? 2} + ' {— 0w — (VD) v+ 107},

where Dy = d, (k).
The model has three interaction vertices: —v'(vd)v, —h'd)h? /2, —h'(vO)h (Note: ' is always under 9)

Diagrammatic representation

m We will denote the model propagators (hh), as a straight line, (hh'), as a straight line with a small
stroke and similarly for the velocity propagators (vv), and (vv')(, but instead of straight lines -
wavy ones.

m The coupling constants are g, = Cj/ (V||0VL0)3/ 2, wy = Dio/vy, T10 = Vjo/vo and xy = v10/1p
(if Dy = 0).

Avaliable symmetries (7)

m The Galilean symmetry of the problem augmented with the velocity field: v — v — nu, u = const.

m Although the symmetry of the original HK equation (1) is not performed (h — h — u, u = const) in
the full model, it reduce the number of such counter terms as, for example, < hhh' >.

The consequence:

m canonical dimensions analysis coupled with the symmetries proves that our model is
multiplicatively renormalizable.

Conclusion (10)

m Was constructed and renormalized a field theory equivalent to the original problem.

m The point of the pure turbulent advection is IR attractive for the most realistic values of the
spatial dimension d = 2 and d = 3. This means that isotropic motion “dominates” over the
nonlinearity and the anisotropy at those values.

m In the future, work from will continue for D, # 0.

Renormalization )]

m Renormalized action functional:

Sr=CHNh /2+ Dv'v'/2+ ' {—0,h — (vO)h + Z1V||8ﬁh + Zov 0T h— Oyh* 2} + ' {—0w — (vO)v + Zvd*v}

m For 7y, Z, and Z5 the calculation is done to the first order of the expansion in ¢ = 4 — d (one-loop
approximation) only for D, = 0:

<hh/>1—ir = lw — V”pﬁZl — VJ_piZQ + —G % + ({\:}—H .
<UU/>1—ir —iw — vp*Zs + ¢A{:}%- .
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m Other terms in the renormalized action functional are finite due to the Galilean symmetry, closed
circuits of retarded propagators, presence of a transverse projector.

m Were calculated RG functions, beta functions, which took the following form:

3 3

By =—yg [5 - 571 — 572] , Bw=—wle —=373], Bey = =211 — 13}, Bay = —T2 |72 — V3],
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where v, =D, In Z;, D, = D, + 5,0, + BuOw + Br,0:, + B2,0:, — 7D, is the differential operator,
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Fixed points and scaling regimes

The RG equation for this model:
(Du - 5gag + BuOw + Bxlaxl + szaarz — V5 D5 + NyYo + Ny Yor + npyn + nh”Yh’) W =0, (3)

where n; — number of corresponding fields, W — a Green’s function.
The canonical (momentum and frequency) scale equations:

(Du — Dy +d;Dy +diDy + di, Dy, + db Dy 4 db Dy, — nydly — nyrdy, — npd), — nh/dfl,) Wt =0, @
( — Dy + d5 Dy — nyd,, — nydy, — npdy — nh/dﬁ‘:/) W =o,

where d;— canonical dimension of corresponding parameter or field.
The equation for critical IR scaling:

( — D, —A,D; + ng)Dg + dZ)Dw + dngwl + d%sz — NNy — Ny Ny — NpA\j, — nh/Ah/) WR = 0. (5)

m The Gaussian fixed point:
g« = 0,w, = 0; 21 # 0 and x5 # 0 are any positive numbers,
Ai = {0,0, —e, —e}— IR attractive for ¢ < 0. Critical exponents: A, = A, =1, Ap = Ay =d — 1;

m Curved line of fixed points:
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Figure: Charges g. and =} parameterized by =}

Ai = {0,e, A3, \s }— IR attractive for € > 0.
The equation for A3 4 :
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Figure: Eigenvalues \3 and A4 normalized to ¢ and parameterized by z}

Critical exponents: A, = A, =1—¢/3, Ap = Ay =d—1+¢/3.

m The point of the pure turbulence advection:
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Unstable points were found in other systems: y; » = 951_,%5 Upg =W xl‘é; U=wr] T, 1
For example: g, = 32¢/9,w, = 0,y7 =0, Vi, N\, = {0, —¢,2¢/3,¢}. This point belongs to the class of
universality of the pure Hwa-Kardar equation without turbulent motion of the medium.
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