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Systems with self-organised criticality & turbulence (1)

What is interesting in models of self-organized criticality (SOC)?

they are open nonequilibrium systems with dissipative transport;

they are believed to be ubiquitous in nature [1];

they arrive at their critical states due to their intrinsic dynamics, i.e. they have no tuning
parameter.

Self-organised critical systems under the influence of turbulence can be studied by renormalization group
method!

Figure: The SOC models are often found in nature

Purpose of the study (2)

The goal of our research is to study universality classes (types of critical behavior) of a system with
self-organised criticality described by anisotropic continuos model of a "running sandpile" [2] while
taking into account turbulent motion of the environment.

The method (3)

Stochastic problem→ Field theoretic formulation (the De Dominicis-Janssen action functional [3]→
Analysis of canonical dimensions→ Feynman diagrams calculation→ Renormalization equations→
Critical exponents

Description of the model (4)

The model of a self-organised critical system behavior is continuous equation for height transport
with strong anisotropy (the Hwa-Kardar equation – HK) [2]:
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h is a height of the profile; ν⊥, ν∥ > 0 are viscosity coefficients;
x = x⊥ + nx∥, |n| = 1, x⊥n = 0, d is the dimension of the x space, ∂⊥, ∂∥ are transverse and
longitudinal derivatives respectively;

f = f (x) is the Gaussian random noise with zero mean:
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The turbulent motion of the environment is modeled by the Navier-Stokes equation with an external
random force (isotropic incompressible viscous fluid):

∂tvi + (v · ∂)vi = ν0∂
2vi − ∂iP + ηi. (2)

P is the pressure, ηi is the transverse external random force per unit mass, ν0 is the kinematic
coefficient of viscosity. ηi is a Gaussian statistics with zero mean, prescribed pair covariance with
vanishing correlation time:

⟨ηi(t,x)ηj(t′,x′)⟩ = δ(t− t′)

(2π)d

∫
Pij(k) dv(k) exp ik(x− x′) dk,

where Pij(k) = δij − kikj/k
2 is the transverse projector,

dv(k) = D1 +D2k
4−d−ξ

Also the velocity field vi(x) is introduced by the replacement ∂th → ∇th ≡ ∂th + (vi∂i)h.

∂ivi = 0;D1, D2 > 0 are amplitude factors.

Field theoretic formulation of the model (5)

The stochastic problem (1) is equivalent to the field theoretic model with the action functional
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′h′/2+D0v
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where D0 ≡ dv(k).
The model has three interaction vertices: −v′(v∂)v, −h′∂∥h

2/2, −h′(v∂)h (Note: h′ is always under ∂)

Diagrammatic representation (6)

We will denote the model propagators ⟨hh⟩0 as a straight line, ⟨hh′⟩0 as a straight line with a small
stroke and similarly for the velocity propagators ⟨vv⟩0 and ⟨vv′⟩0, but instead of straight lines -
wavy ones.

The coupling constants are g0 = C0/(ν∥0ν⊥0)
3/2 , w0 = D10/ν0 , x10 = ν∥0/ν0 and x20 = ν⊥0/ν0

(ifD20 = 0).

Avaliable symmetries (7)

The Galilean symmetry of the problem augmented with the velocity field: v → v − nu, u = const.
Although the symmetry of the original HK equation (1) is not performed (h → h− u, u = const) in
the full model, it reduce the number of such counter terms as, for example, < hhh′ >.

The consequence:

canonical dimensions analysis coupled with the symmetries proves that our model is
multiplicatively renormalizable.

Conclusion (10)

Was constructed and renormalized a field theory equivalent to the original problem.
The point of the pure turbulent advection is IR attractive for the most realistic values of the
spatial dimension d = 2 and d = 3. This means that isotropic motion ”dominates” over the
nonlinearity and the anisotropy at those values.
In the future, work from will continue forD2 ̸= 0.

Renormalization (8)

Renormalized action functional:

SR = Ch′h′/2+Dv′v′/2+h′{−∂th− (v∂)h+Z1ν∥∂
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For Z1, Z2 and Z3 the calculation is done to the first order of the expansion in ε = 4− d (one-loop
approximation) only forD2 = 0:
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Other terms in the renormalized action functional are finite due to the Galilean symmetry, closed
circuits of retarded propagators, presence of a transverse projector.

Were calculated RG functions, beta functions, which took the following form:

βg = −g

[
ε− 3

2
γ1 −

3

2
γ2

]
, βw = −w [ε− 3γ3] , βx1 = −x1 [γ1 − γ3] , βx2 = −x2 [γ2 − γ3] ,

where γi = D̃µ lnZi, D̃µ = Dµ + βg∂g + βw∂w + βx1∂x1 + βx2∂x2 − γνDν is the differential operator,

γ1 = g
3
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w

8
.

Fixed points and scaling regimes (9)

The RG equation for this model:

(Dµ + βg∂g + βw∂w + βx1∂x1 + βx2∂x2 − γν̃Dν̃ + nvγv + nv′γv′ + nhγh + nh′γh′)W
R = 0, (3)

where ni − number of corresponding fields,WR− a Green’s function.
The canonical (momentum and frequency) scale equations:(

Dµ −Dx + dpν̃Dν̃ + dpgDg + dpwDw + dpx1Dx1 + dpx2Dx2 − nvd
p
v − nv′dpv′ − nhd

p
h − nh′d

p
h′

)
WR = 0,(

−Dt + dων̃Dν̃ − nvd
ω
v − nv′dωv′ − nhd

ω
h − nh′d

ω
h′

)
WR = 0,

(4)

where di− canonical dimension of corresponding parameter or field.
The equation for critical IR scaling:(

−Dx −∆ωDt + dpgDg + dpwDw + dpx1Dx1 + dpx2Dx2 − nv∆v − nv′∆v′ − nh∆h − nh′∆h′

)
WR = 0. (5)

The Gaussian fixed point:
g∗ = 0, w∗ = 0; x1 ̸= 0 and x2 ̸= 0 are any positive numbers,
λi = {0, 0,−ε,−ε}− IR attractive for ε < 0. Critical exponents: ∆h = ∆v = 1, ∆h′ = ∆v′ = d− 1;

Curved line of fixed points:
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Figure: Charges g∗ and x∗1 parameterized by x∗2

λi = {0, ε, λ3, λ4}− IR attractive for ε > 0.
The equation for λ3,4 :
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where g = g∗, x1 = x∗1, x2 = x∗2.

0.2 0.4 0.6 0.8 1.0 1.2
x
2

✶

0.15

0.20

0.25

0.30

λ3

0.2 0.4 0.6 0.8 1.0 1.2
x
2

✶

0.55

0.60

0.65

0.70

λ4

Figure: Eigenvalues λ3 and λ4 normalized to ε and parameterized by x∗2

Critical exponents: ∆h = ∆v = 1− ε/3, ∆h′ = ∆v′ = d− 1 + ε/3.
The point of the pure turbulence advection:

w∗ = 8ϵ/3, g∗ = 0, x∗1 = x∗2 =

√
13− 1

2
.

Unstable points were found in other systems: y1,2 = x−1
1,2; u1,2 = w x−1

1,2; u = w x−1
1 x−1

2 .
For example: g∗ = 32ε/9, w∗ = 0, y∗1 = 0, ∀y∗2, λi = {0,−ε, 2ε/3, ε}. This point belongs to the class of
universality of the pure Hwa-Kardar equation without turbulent motion of the medium.
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