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Abstract

We compute classical and quantum Lyapunov exponents for vector mechanics
with broken O(N) symmetry. In high temperature limit Lyapunov exponents
approximately coincide and scale as κ ≈ 1.3 4√

λT/N with temperature T,
number of degrees of freedom N, and coupling constant λ.

Classical Lyapunov exponents

Consider Hamiltonian system, zI = (xi, pj)

żI = πIJ∂H
∂zJ

→ z = z(t; z0)

How to characterize deviation of neighboring trajectories?
▶ Intuitively

∥z(t; z0) − z(t; z0 + ∆z)∥ ∼ eκt ≤ Lsystem

▶ Rigorously. Define matrix Φ

ΦIJ(t; z0) :=
∂zI(t; z0)

∂zJ
0

→ Φ̇IJ = πIK ∂2H
∂zK∂zL

ΦLJ

SVD decompose it Φ = U Σ VT, Σ = diag(σmax, . . . σmin) and define
Lyapunov exponent κ as

σmax ∼ eκt → κ := lim
t→∞

1
t
log σmax(t)

But! Lyapunov exponent depends on initial conditions
κ = κ(z0)

To make it independent, just average it

κ(z0) 7→ κ = ⟨κ(z0)⟩z0 =

∫
dµ(z0)κ(z0),

e.g. with measure

dµβ(z) ∼ dz e−βH(z), dµE(z) ∼ dz δ(H(z) − E)
For large N models first measure can be estimated by second one in O(1/

√
N)

order.

OTOCs and quantum Lyapunov exponents

How to quantize the notion of Lyapunov exponent? Write defitition of Φ as

ΦIJ =
∂zI(t; z0)

∂zJ
0

=
{

zI(t, z0), zK
0
}

z0
(π−1)KJ

then canonically quantize{
zI(t, z0), zK

0
}

z0
7→

i
ℏ
[̂
zI(t), ẑK(0)

]
=

i
ℏ

(
[x̂(t), x̂(0)] [x̂(t), p̂(0)]
[p̂(t), x̂(0)] [p̂(t), p̂(0)]

)
and average over ρ̂.
In what order?
▶ After extracting σmax

κ = lim
t→∞

1
t
⟨log

i
ℏ
[x̂(t), x̂(0)]⟩ρ — not suitable for large N

▶ Before extracting σmax

⟨Φ̂⟩ρ ∼ ⟨[x̂i(t1), x̂j(t2)]⟩ρ — vanishes or oscillates

Right way (but not unique) — define OTOC Cij(t1, t2, t3, t4) ∼ ⟨Φ̂Φ̂T⟩ρ
Cij(t1, t2, t3, t4) = tr

(
ρ̂

1
2 [x̂i(t1), x̂j(t2)]† ρ̂

1
2 [x̂i(t3), x̂j(t4)]

)
Some facts and issues on OTOCs
▶ OTOCs are very hard to calculate

(doubled Schwinger-Keldysh diagram technique, etc).
▶ What is universal choice for ρ̂?
▶ OTOCs and its classical counterpart are rarely compared in literature.

Main problem

Task is to calculate quantum and classical Lyapunov
exponents for concrete model and compare results in

different limits.

Our model

▶ Action — O(N)-model with diagonal terms excluded

S =

∫
dt
[ N∑

i=1

(
1
2

ẋ2
i −

m2

2
x2

i

)
−

λ

4N

N∑
i,j=1

x2
i x2

j︸ ︷︷ ︸
symmetric

+
λ

4N

N∑
i=1

x4
i︸ ︷︷ ︸

nonsymmetric

]

▶ Origins — SU(2) Yang-Mills (N = 3 case)

∂iAa
i = 0, Aa

0 = 0, Aa
i ∼ Oa

i xa(t) → ẍa + [x2 − (xa)2]xa = 0
▶ N = 2 case — well studied

SN=2 =

∫
dt
[

1
2

ẋ2 +
1
2

ẏ2 −
m2

2
x2 −

m2

2
y2 −

λ

4
x2y2

]

OTOC calculation

Strategy of OTOC calculation is as follows
1. Resum self-energy diagrams

2. Resum bubble diagrams

3. Solve Bethe-Salpeter equation for OTOC

Final result is

κq ≈
8
√

6
N

[
6 − 2

m2

m̃2

]−3
2 eβm̃/2

eβm̃ − 1
λ

m̃2
,

m̃2

m2
= 1 +

λ

2m3

m
m̃

coth

(
βm̃
2

)
,

and in high-temperature limit βm ≪ 1, βm ≪ λ/m3 becomes

κhigh
q ≈

4
3N

4

√
λ

β

(
1 + O

(
1/N, (βm4/λ)

1
2
))

.

First quantum correction ∼ ℏ2 arises in third order of
√
βm4/λ expansion.

Numerical results

How to compare obtained result to classical Lyapynov exponent?
▶ Generate large sample of initial conditions for fixed d.o.f. number N and

energy E.
▶ Solve ODE for z and Φ and calculate Lyapunov exponents.
▶ Repeat for different N and/or E.
▶ Average and fit the results.
For example, energy dependence of classical Lyapunov exponent show
good coincidence to quantum counterpart
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N = 10, linear fit with slope 0.32± 0.05

N = 20, linear fit with slope 0.26± 0.05

N = 30, linear fit with slope 0.26± 0.07

Corresponding quantum exponents
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