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Classical and quantum chaos

Classical chaos is closely related to the exponential sensitivity to initial
conditions (“butterfly effect”):
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where  is called the classical Lyapunov exponent

Quantum chaos and quantum Lyapunov exponent are more subtle because
there are no trajectories in quantum world

Due to this reason, we need to find alternative signatures of chaos that are
well defined in the quantum case and distinct chaotic and integrable systems
in the semiclassical limit
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OTOCs

One of such signatures, which has recently grown popular, is the exponential
growth of the out-of-time-ordered correlation functions (OTOCs):
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In the semiclassical limit, OTOCs capture the “butterfly effect™
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OTOCs allow us to define the quantum Lyapunov exponent:
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Note that eventually OTOCs are saturated, which reflects the breakdown of
the semsiclassical description (cf. the Ehrenfest time)
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Correspondence

Unfortunately, the correspondence between the classical and quantum chaos
remains relatively poorely studied

Besides, there are few examples where OTOCs can be calculated analytically

Therefore, it is useful to consider a tractable model, where this
correspondence can be checked directly

As an example of such a model, we propose the vector mechanics with a
large number of degrees of freedom N and quartic interaction:

z X m?2 X X
S= dt -2 Mo 22, 2. "~ a4
i=1 2 I 2 I 4N i;j=1 t 4N i=1 :
——) —{—

symmetric nonsymmetric

We also assume the system to be thermal with an inverse temperature

We will show that the symmetric model (= 0) is both classically and
quantum integrable, whereas the nonsymmetric model (& 0) is chaotic
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Augmented Schwinger-Keldysh technique

To calculate the regularized OTOC, we use the augmented Schwinger-Keldysh
technique on the twofold contour (in our notation C(t) = @, @,C12:34 :;E;;)
Ci23a = h y+(t1) u—(t3) g+(t2) a—(ta)i h u_(t1) u+(ta) a—(t2) a+(ta)i
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nted Schwinger-Keldysh technique

The vertices are the same as in the standard (onefold) technique

In addition to the standard R/A/K propagators, the augmented technique
contains the W propagator that connects different folds:
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No chaos in the symmetric model

The leading corrections to the averaged OTOC in the O(N)-symmetric
model are described by the so-called “ladder’ diagrams

Substituting the exponential ansatz C1o34 €2 L t=1(t1+t, t3 ty),
into the Bethe-Salpeter equation, we get the equation on
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where w =e M2z ¢ M 1  m is the renormalized mass, and s the
parameter of the resummed vertices (shaded bubbles on the picture)

All solutions to this equation are purely inaginary; hence, there is

no quantum chaos in the O(N)-symmetric model
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Chaos in the full nonsymmetric model

Keeping in mind the leading contributions from nonsymmetric vertices and
using the same ansatz for Ci2.34, we get the equation on in the full model:
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The solutions to this equation has a positive real part
The maximal quantum Lyapunov exponent is as follows:
P
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The exponent scales as ¢ = in the high-temperature limit and is
exponentially suppressed in the low-temperature limit:
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Comparison to classical chaos

The O(N)-symmetric model is clearly classically integrable, i.e., its
maximal Lyapunov exponent is zero

The numerical calculations of the maximal Lyapunov exponent in the
nonsymmetric model yield the following high-temperature behavior:

1 0:28 0:02
where we assume =1 and use the relation N=E

Details of this calculations are discussed in Nikita Kolganov’s poster,
which | kindly ask you to examine

Thus, in both models, classical and quantum Lyapunov exponents
approximately coincide with each other
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Qualitative analysis

In fact, the high-temperature behavior of classical and quantum Lyapunov
exponents can be deduced from dimensional grounds

In the limit m land m =m?3, the quadratic part of the potential
energy is negligible, so the Hamiltonian acquires the following form (= 1):
high X1 2 = 2 2
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This “pruned” Hamiltonian is invariant under the scale transformations:
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Since the Lyapunov exponent has the dimension of inversg)t_ime, It_,his
invariance implies the high-temperature dependence E * =
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Analogy to billiards

Furthermore, we can compare the constant potential energy surface
(CPE surface) with a wall of a Sinai billiard

It is known that Sinai billiards exhibit a chaotic behavior in the presence of
concave walls

In the nonsymmetric model, the CPE surface becomes concave at energies
E > E.,, = 3Nm*=2 , which agrees with the emergence of chaos
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Figure: [Left] CPE curve for N = 2 and E < Econ (blue line), E = Econ (orange line),
E > Econ (green line). [Right] CPE surface for N =3 and E  Econ.
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Conclusion

We suggest a tractable chaotic model — the nonlinear vector mechanics with
a quartic interaction and thermal initial state

In the O(N)-symmetric case, both classical and quantum Lyapunov
exponents are zero
In the nonsymmetric case, both exponents emerge in the th—temperature

limit, approximately coincide, and scale as La_

cl N
This calculation supports the use of OTOCs as a diagnostic of quantum chaos
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