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Classical and quantum chaos

� Classical chaos is closely related to the exponential sensitivity to initial
conditions (“butterfly effect”):

k�z(t)k � e�cltk�z(0)k;

where �cl is called the classical Lyapunov exponent
� Quantum chaos and quantum Lyapunov exponent are more subtle because

there are no trajectories in quantum world
� Due to this reason, we need to find alternative signatures of chaos that are

well defined in the quantum case and distinct chaotic and integrable systems
in the semiclassical limit
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OTOCs

� One of such signatures, which has recently grown popular, is the exponential
growth of the out-of-time-ordered correlation functions (OTOCs):
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� In the semiclassical limit, OTOCs capture the “butterfly effect”:
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� OTOCs allow us to define the quantum Lyapunov exponent:
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� Note that eventually OTOCs are saturated, which reflects the breakdown of
the semsiclassical description (cf. the Ehrenfest time)
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Correspondence

� Unfortunately, the correspondence between the classical and quantum chaos
remains relatively poorely studied

� Besides, there are few examples where OTOCs can be calculated analytically
� Therefore, it is useful to consider a tractable model, where this

correspondence can be checked directly
� As an example of such a model, we propose the vector mechanics with a

large number of degrees of freedom N and quartic interaction:
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� We also assume the system to be thermal with an inverse temperature �
� We will show that the symmetric model (� = 0) is both classically and

quantum integrable, whereas the nonsymmetric model (� 6= 0) is chaotic
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Augmented Schwinger-Keldysh technique

To calculate the regularized OTOC, we use the augmented Schwinger-Keldysh
technique on the twofold contour (in our notation C(t) = @t1@t2C12;34

��t1=t2=t

t3=t4=0
):

C12;34 = �h�u+(t1)�u−(t3)�d+(t2)�d−(t4)i � h�u−(t1)�u+(t3)�d−(t2)�d+(t4)i
+ h�u+(t1)�u−(t3)�d−(t2)�d+(t4)i+ h�u−(t1)�u+(t3)�d+(t2)�d−(t4)i

= �h�uc(t1)�dc(t2)�uq(t3)�dq(t4)i :
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Augmented Schwinger-Keldysh technique

� The vertices are the same as in the standard (onefold) technique
� In addition to the standard R/A/K propagators, the augmented technique

contains the W propagator that connects different folds:
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No chaos in the symmetric model

� The leading corrections to the averaged OTOC in the O(N)-symmetric
model are described by the so-called “ladder” diagrams

� Substituting the exponential ansatz C12;34 � e2�t, t = 1
2 (t1 + t2 � t3 � t4),

into the Bethe-Salpeter equation, we get the equation on �:
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where w = e� ~m=2=
�
e� ~m � 1

�
, ~m is the renormalized mass, and � is the

parameter of the resummed vertices (shaded bubbles on the picture)
� All solutions to this equation are purely inaginary; hence, there is

no quantum chaos in the O(N)-symmetric model
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Chaos in the full nonsymmetric model

� Keeping in mind the leading contributions from nonsymmetric vertices and
using the same ansatz for C12;34, we get the equation on � in the full model:
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� The solutions to this equation has a positive real part
� The maximal quantum Lyapunov exponent is as follows:
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� The exponent scales as �q � 4
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exponentially suppressed in the low-temperature limit:
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Comparison to classical chaos

� The O(N)-symmetric model is clearly classically integrable, i.e., its
maximal Lyapunov exponent is zero

� The numerical calculations of the maximal Lyapunov exponent in the
nonsymmetric model yield the following high-temperature behavior:

��cl � (1:3� 0:2)
1

N1:18�0:05

�
�

�

�0:28�0:02

;

where we assume � = 1 and use the relation � � N=E
� Details of this calculations are discussed in Nikita Kolganov’s poster,

which I kindly ask you to examine
� Thus, in both models, classical and quantum Lyapunov exponents

approximately coincide with each other
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Qualitative analysis

� In fact, the high-temperature behavior of classical and quantum Lyapunov
exponents can be deduced from dimensional grounds

� In the limit �m� 1 and �m� �=m3, the quadratic part of the potential
energy is negligible, so the Hamiltonian acquires the following form (� = 1):
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� This “pruned” Hamiltonian is invariant under the scale transformations:

t! �1t; �i ! �i; H ! 4H

� Since the Lyapunov exponent has the dimension of inverse time, this
invariance implies the high-temperature dependence � � 4

p
E � 4

p
�=�
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Analogy to billiards

� Furthermore, we can compare the constant potential energy surface
(CPE surface) with a wall of a Sinai billiard

� It is known that Sinai billiards exhibit a chaotic behavior in the presence of
concave walls

� In the nonsymmetric model, the CPE surface becomes concave at energies
E > Econ = 3Nm4=2�, which agrees with the emergence of chaos
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Figure: [Left] CPE curve for N = 2 and E < Econ (blue line), E = Econ (orange line),
E > Econ (green line). [Right] CPE surface for N = 3 and E � Econ.
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Conclusion

� We suggest a tractable chaotic model — the nonlinear vector mechanics with
a quartic interaction and thermal initial state

� In the O(N)-symmetric case, both classical and quantum Lyapunov
exponents are zero

� In the nonsymmetric case, both exponents emerge in the high-temperature
limit, approximately coincide, and scale as �q � �cl � 1

N
4

q
�
�

� This calculation supports the use of OTOCs as a diagnostic of quantum chaos
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