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Partile linking physis, astrophysis, and more...
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A piee of history: from V. Pauli (1930) to F. Reines & C.Covan (1956).
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Horizons of multi-messenger high-energy astronomy & astrophysis

a

Figure shows the distanes at whih the Universe beomes opaque to eletromagneti radiation.

While lower-energy photons an travel to us from the farthest orners of the Universe, the highest

energy photons and osmi rays are attenuated after short distanes, obsuring our view of the most

energeti osmi events. In ontrast, the Universe is transparent to gravitational waves and neutrinos,

making them suitable probes of the high-energy sky.

[From I. Bartos & M. Kowalski, �Multimessenger Astronomy� (Physis World Disovery, IoP Publishing, Bristol, 2017).℄
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Preview of loal ν/ν �ows in rude urves
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[Construted from the data of L. M. Krauss et al., �Antineutrino astronomy and geophysis�, Nature 310 (1984) 191�198

and E. Vitagliano et al., �Grand uni�ed neutrino spetrum at Earth: Soures and spetral omponents,� Rev. Mod. Phys.

92 (2020) 45006, arXiv:1910.11878 [astro-ph.HE℄ (left panel ) and A. M. Bakih, �Aspets of neutrino astronomy�,

Spae Si. Rev. 49 (1989) 259�310 and R. Calabrese et al., �Primordial blak hole dark matter evaporating on the

neutrino �oor,� Phys. Lett. B 829 (2022) 137050, arXiv:2106.02492 [hep-ph℄ (right panel ).℄
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1 Interation Lagrangian and weak urrents.

In the Standard Model (SM), the harged and neutral urrent neutrino interations with

leptons are desribed by the following parts of the full Lagrangian:

LCC

I (x) = − g

2
√

2
jCCα (x)Wα(x) + H.. and LNC

I (x) = − g

2 cos θ

W

jNCα (x)Zα(x).

Here g is the SU(2) (eletro-weak) gauge oupling onstant

g2 = 4
√

2m2
WGF , g sin θ

W

= |e|,

and θ

W

is the weak mixing (Weinberg) angle, (sin2 θ

W

(MZ) = 0.23120).

The leptoni harged urrent and neutrino neutral urrent are given by the expressions:

jCCα (x) = 2
∑

ℓ=e,µ,τ,...

νℓ,L(x)γαℓL(x) and jNCα (x) =
∑

ℓ=e,µ,τ,...

νℓ,L(x)γανℓ,L(x).

Phenomenologially, the harged and neutral urrents may inlude (yet unknown) heavy

neutrinos and orresponding heavy harged leptons. The left- and right-handed fermion �elds

are de�ned as usually:





νℓ,L(x) = PLνℓ(x), ℓL(x) = PLℓ(x), PL ≡ 1

2
(1 − γ5),

νℓ,R(x) = PRνℓ(x), ℓL(x) = PRℓ(x), PR ≡ 1

2
(1 + γ5).
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Physial meaning of hiral projetions for a massive Dira fermion.

(p̂−m)ψ = 0 =⇒
(
p0 −m −pσ

pσ −p0 −m

)(
φ

χ

)
= 0 =⇒

{
(pσ)χ = (p0 −m)φ,

(pσ)φ = (p0 +m)χ.

⇓

ψL = PLψ =
1

2

(
φ− χ
χ− φ

)
=

(
φ−

−φ−

)

ψR = PRψ =
1

2

(
φ+ χ

φ+ χ

)
=

(
φ+

φ+

) where φ± =
1

2

(
1± pσ

p0 +m

)
φ.

Let p0 ≫ m and thus 1− |v| ≪ 1, where v = p/p0. Then, direting v along the z axis we obtain

φ− ≃ 1− σ3

2
φ =

(
0 0

0 1

)(
φ→

φ←

)
=

(
0

φ←

)
, φ+ ≃ 1 + σ3

2
φ =

(
1 0

0 0

)(
φ→

φ←

)
=

(
φ→

0

)
.

Reminder: Pauli & Dira matries

σ0 ≡ 1 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
.

γ0 = γ0 =

(
σ0 0

0 −σ0

)
, γk = −γk =

(
0 σk

−σk 0

)
, k = 1, 2, 3, γ5 = γ5 =

(
0 σ0

σ0 0

)
.
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Note that the kineti term of the Lagrangian inludes both L and R handed neutrinos and moreover,

it an inlude other sterile neutrinos:

L0 =
i

2
[ν(x)γα∂αν(x)− ∂αν(x)γαν(x)] ≡ i

2
ν(x)
←→
∂ ν(x) =

i

2

[
νL(x)

←→
∂ νL(x) + νR(x)

←→
∂ νR(x)

]
,

ν(x) = νL(x) + νR(x) =




νe(x)

νµ(x)

ντ (x)

.

.

.




, νL/R(x) =




νe,L/R(x)

νµ,L/R(x)

ντ,L/R(x)

.

.

.




=
1∓ γ5

2




νe(x)

νµ(x)

ντ (x)

.

.

.




.

Neutrino hirality: γ5νL = −νL and γ5νR = +νR.

The Lagrangian of the theory with massless neutrinos is invariant with respet to the global gauge

transformations

νℓ(x)→ eiΛℓνℓ(x), ℓ(x)→ eiΛℓℓ(x) with Λℓ = onst.

By Noether's theorem this leads to onservation of the individual lepton �avor numbers (more rarely

alled lepton �avor harges) Lℓ. It is agreed that

Lℓ(ℓ−, νℓ) = +1, Lℓ(ℓ+, νℓ) = −1, ℓ± = e±, µ±, τ±, et.

Lepton �avor onservation is not the ase for massive neutrinos.

There are two fundamentally di�erent kinds of neutrino mass terms: Dira and Majorana.
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2 Dira neutrinos

The onventional Dira mass term for a single spinor �eld ψ(x) is well known:

−mψ(x)ψ(x) = −m
[
ψRψL + ψLψR

]
= −mψR(x)ψL(x) + H..

(the identities ψLψL = ψRψR = 0 and (ψRψL)† = ψLψR are used here).

The most general extension to the N -generation Dira neutrino ase reads:

L

D

(x) = −νR(x)M

D

νL(x) + H..,

where M

D

is a nonsingular [to exlude massless ase℄ omplexN ×N matrix.

In general, N ≥ 3 sine the olumn νL may inlude both ative and sterile

neutrino �elds whih do not enter into the standard harged and neutral urrents.

Any nonsingular omplex matrix an be diagonalized by means of an appropriate bi-unitary

transformation

M

D

= ṼmV
†, m = ||mkδkl|| = diag (m1,m2, . . . ,mN ),

where V and Ṽ are unitary matries and mk ≥ 0.
=⇒ L

D

(x) = −ν ′R(x)mν′L(x) + H.. = −ν′(x)mν′(x) = −
N∑

k=1

mkνk(x)νk(x),

where the new �elds νk are de�ned by

ν ′L(x) = V
†νL(x), ν′R(x) = Ṽ

†νR(x), ν ′(x) = (ν1, ν2, . . . , νN )T .

The �elds ν′R(x) do not enter into LI =⇒ the matrix Ṽ remains out of play...
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Sine VV† = V†V = 1 and Ṽ†Ṽ = ṼṼ† = 1, the neutrino kineti term in the Lagrangian is

transformed to

L0 =
i

2

[
ν′L(x)

←→
∂ ν′L(x) + ν′R(x)

←→
∂ ν ′R(x)

]
=
i

2
ν′(x)

←→
∂ ν ′(x) =

i

2

∑

k

νk(x)
←→
∂ νk(x).

⇓

νk(x) is the �eld of a Dira neutrino with the mass mk and the �avor LH neutrino �elds νℓ,L(x)

involved into the SM weak lepton urrents are linear ombinations of the LH omponents of the

�elds of the neutrinos with de�nite masses:

νL = Vν ′L or νℓ,L =
∑

k

Vℓkνk,L.

The matrix V is referred to as the Ponteorvo-Maki-Nakagawa-Sakata (PMNS) neutrino mixing

matrix while the matrix Ṽ is not honored with a personal name.

Quark-lepton omplementarity (QLC): Of ourse the PMNS matrix it is not the same as the CKM

(Cabibbo-Kobayashi-Maskawa) quark mixing matrix. However the PMNS and CKM matries may be,

in a sense, omplementary to eah other.

The QLC means that in the same (PDG) parametrizations the sums of (small) quark and (large) lepton

mixing angles are almost (i.e., within errors) equal to π/4 for (ij) = (12) and (23):

θCKM12 + θPMNS

12 = (46.49 ± 0.77)◦, θCKM23 + θPMNS

23 = (44.48 ± 1.10)◦, sum = (90.97 ± 1.34)◦.

The origin of the data (but not QLC) will be explained below.
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2.1 Parametrization of mixing matrix for Dira neutrinos.

It is well known that a omplex n× n unitary matrix depends on n2

real parameters.

The lassial result by Franis Murnaghan [F. D. Murnaghan, �The unitary and rotation groups (Letures on

Applied Mathematis, Volume 3),� Spartan Books, Washington, D.C. (1962)℄ states that any n× n matrix from

the unitary group U(n) an be presented as produt of the diagonal phase matrix

Γ = diag

(
eiα1 , eiα2 , . . . , eiαn

)
,

ontaining n phases αk, and n(n− 1)/2 matries U whose main building bloks have the form

(
cos θ sin θ e−iφ

− sin θ e+iφ cos θ

)
=

(
1 0

0 e+iφ

)(
cos θ sin θ

− sin θ cos θ

)

︸ ︷︷ ︸
Euler rotation

(
1 0

0 e−iφ

)
.

Therefore any n× n unitary matrix an be parametrized in terms of

n(n− 1)/2 �angles� (taking values within [0, π/2])

and

n(n+ 1)/2 �phases� (taking values within [0, 2π)).

The usual parametrization of both the CKM and PMNS matries is of this type.

IMPORTANT: Murnaghan's fatorization method does not speify the sequene of the

building bloks Γ and U.
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One an redue the number of the phases further by taking into aount that the Lagrangian with

the Dira mass term is invariant with respet to the transformation

ℓ 7→ eiaℓℓ, νk 7→ eibkνk, Vℓk 7→ ei(bk−aℓ)Vℓk,

and to the global gauge transformation

ℓ 7→ eiΛℓ, νk 7→ eiΛνk, with Λ = onst. (1)

Therefore 2N − 1 phases are unphysial and the number of physial (Dira) phases is

n

D

=
N(N + 1)

2
− (2N − 1) =

N2 − 3N + 2

2
=

(N − 1)(N − 2)

2
(N ≥ 2);

n

D

(2) = 0, n

D

(3) = 1, n

D

(4) = 3, . . .

• The global symmetry (1) leads to onservation of the lepton harge

L =
∑

ℓ=e,µ,τ,...

Lℓ

ommon to all harged leptons and all neutrinos νk. However

The individual lepton �avor numbers Lℓ are no longer onserved.

• The nonzero physial phases lead to the CP (and T ) violation in the neutrino setor.

a

This ould

have important impliations for partile physis and osmology (leptogenesis, baryogenesis,...).

a

The proof an be found, e.g., in Se. 4.6 of C. Giunti and C. W. Kim, �Fundamentals of neutrino physis

and astrophysis� (Oxford University Press In., New York, 2007) or in Se. 6.3 of S. M. Bilenky, �Introdution

to the physis of massive and mixed neutrinos� (2nd ed.), Let. Notes Phys. 947 (2018) 1�276. Note the

di�erenes in notation and in representation for the matrix C.
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2.1.1 Three-neutrino ase.

In the most interesting (today!) ase of three lepton generations one de�nes the orthogonal rotation

matries in the ij-planes whih depend upon the mixing angles θij :

O12 =




c12 s12 0

−s12 c12 0

0 0 1




︸ ︷︷ ︸

Solar matrix

, O13 =




c13 0 s13

0 1 0

−s13 0 c13




︸ ︷︷ ︸

Reator matrix

, O23 =




1 0 0

0 c23 s23

0 −s23 c23




︸ ︷︷ ︸

Atmospheri matrix

,

(where cij ≡ cos θij , sij ≡ sin θij) and the diagonal matrix with the Dira phase fator:

Γ

D

= diag

(
1, 1, eiδ

)
.

The parameter δ is ommonly referred to as the Dira CP -violation/violating phase.

Finally, by applying Murnaghan's fatorization, the PMNS matrix for the Dira neutrinos an be

parametrized as

V

(D)

= O23Γ

D

O13Γ †

D

O12 =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


 .

⋆ This is the Chau�Keung presentation advoated by the PDG for both CKM and PMNS matries.

⋆ Remember that the positioning of the fators in V

(D)

is not �xed by the Murnaghan (or any other)

algorithm and is just a subjet-matter of agreement.

⋆ Today we believe we know a lot about the entries of this matrix.
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2.1.2 Lepton numbers are not onserved, so what of it?.

Sine the Dira mass term violates onservation of the individual lepton numbers, Le, Lµ, Lτ , it

allows many lepton family number violating proesses, like

µ± → e± + γ, µ± → e± + e+ + e−,

K+ → π+ + µ± + e∓, K− → π− + µ± + e∓,

µ− + (A,Z)→ e− + (A,Z), τ− + (A,Z)→ µ− + (A,Z), . . .

However the (ββ)0ν deay or the kaon semileptoni deays like

K+ → π− + µ+ + e+, K− → π+ + µ− + e−,

et. are still forbidden as a onsequene of the total lepton harge onservation.

Current limits on the simplest lepton family number violating µ and τ deays (2020).

a

Deay Modes Fration C.L. Deay Modes Fration C.L.

µ− → e−νeνµ < 1.2% 90% τ− → e−γ < 3.3× 10−8

90%

µ− → e−γ < 4.2× 10−13

90% τ− → µ−γ < 4.4× 10−8

90%

µ− → e−e+e− < 1.0× 10−12

90% τ− → e−π0 < 8.0× 10−8

90%

µ− → e−2γ < 7.2× 10−11
90% τ− → µ−π0 < 1.1× 10−7

90%

These limits are not quite as impressive as might appear at �rst glane.

a

P. A. Zyla et al. (Partile Data Group), �Review of Partile Physis�, PTEP 2020 (2020) 083C01.
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History & future of
   LFV experiments
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[From N. Berger, �Charged lepton �avour violation experiments,� talk at the Z�urih Phenomenology Workshop, January

2015. For details, see W. J. Mariano, T. Mori, and J. M. Roney, �Charged lepton �avor violation experiments,� Ann.

Rev. Nul. Part. Si. 58 (2008) 315�341. Is not yet updated!℄
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2.1.3 Neutrinoless muon deay in SM.

The Lµ and Le violating muon deay µ− → e−γ is

allowed if V ∗µkVek 6= 0 for k = 1, 2 or 3. The orresponding

Feynman diagrams inlude W loops and thus the deay

width is strongly suppressed by the neutrino to W boson

mass ratios:

R =
Γ
(
µ− → e−γ

)

Γ (µ− → e−νµνe)
=

3α

32π

∣∣∣∣∣
∑

k

V ∗µkVek
m2

k

m2
W

∣∣∣∣∣

2

.

Sine mk/mW ≈ 1.244× 10−12 (mk/0.1 eV), the ratio

an be estimated as

R ≈ 5.22× 10−52

∣∣∣∣∣
∑

k

V ∗µkVek

(
mk

0.1 eV

)2

∣∣∣∣∣

2

. 8× 10−54,

while the urrent experimental upper limit is (at least!) 40

orders of magnitude larger (see Table in p. 16):

R

(exp)

< 4.2× 10−13

at 90% C.L. (NO GO!)

Some nonstandard models are muh more optimisti.

We must deeply appreiate the osillation phenomenon

whih makes the miserable ν mass e�et measurable.

W W

γ

µ eν
kV

µk Vek

∗

Wγ

µ eν
kV

µk Vek

∗

W γ

µ eν
kV

µk Vek

∗
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2.2 Nulear beta deay.

The method of measurement of the (anti)neutrino mass through the investigation of the high-energy

part of the β-spetrum was proposed by Perrin (1933) and Fermi (1934).

The �rst experiments on the measurement of the neutrino mass with this method have been done by

Curran, Angus and Cokroft (1948) and Hanna and Ponteorvo (1949).

The energy spetrum of eletrons in the deay (A,Z)→ (A,Z + 1) + e− + νe is

a

dΓ

dT
=
∑

k

|Vek|2 dΓk

dT
, (2)

dΓk

dT
=

(GF cos θC)2

2π3
ppk (T +me) (Q− T ) |M|2 F (T, Z)θ (Q− T −mk). (3)

Here GF is the Fermi onstant, θC is the Cabibbo angle, me, p and T are the mass, magnitude of

the momentum and kineti energy of the eletron, respetively,

pk =
√
E2

k −m2
k =

√
(Q− T )2 −m2

k and Q = Ek + T = EA,Z −EA,Z+1 −me

are, respetively, the magnitude of the neutrino momentum and energy released in the deay (the

endpoint of the β spetrum in ase mk = 0),M is the nulear matrix element, and F (T, Z) is the

Fermi funtion, whih desribes the Coulomb interation of the �nal-state nuleus and eletron.

The step funtion in Eq. (3) ensures that a neutrino state νk is only produed if its total energy is

larger than its mass: Ek = Q− T ≥ mk.

a

The reoil of the �nal nuleus and radiative orretions (lukily small) are negleted.
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As it is seen from Eq. (2), the largest distortion of the β-spetrum due to neutrino masses an be

observed in the region

Q− T ∼ mk. (4)

However, for max (mk) ≃ 0.1 eV only a very small part (about 10−(13−14)

) of the deays give

ontribution to the region (4). This is the reason why in the analysis of the results of the

measurement of the β-spetrum a relatively large part of the spetrum is used.

a

Taking this into aount and applying unitarity of the mixing matrix, we an write

∑

k

|Vek|2 pk ≈
∑

k

|Vek|2 (Q− T )

[
1− m2

k

2(Q− T )2

]
⇐= 4E2

k ≫ m2
k

= (Q− T )

[
1− 1

2(Q− T )2

∑

k

|Vek|2 m2
k

]
⇐=

∑

k

|Vek|2 = 1

≈
√

(Q− T )2 −m2
β ,

where the e�etive neutrino mass mβ is de�ned by

m2
β =

∑

k

|Vek|2 m2
k

and it was assumed that

max
k

(
m2

k

)
≪ 4(Q− T )2.

a

For example, in the Mainz tritium experiment (see below) the last 70 eV of the spetrum is used.
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Finally, the β-spetrum that is used for �tting

the data an be presented as

dΓ

dT
∝ p (T +me) |M|2 F (T )K2(T ),

where we have de�ned the Kurie funtion

(sometimes alled Fermi-Kurie funtion)

K(T )∝
√

dΓ/dT

p (T +me) |M|2 F (T )

≈ (Q− T )

[
1− m2

β

(Q− T )2

]1/4

developed by Franz Newell Devereux Kurie.

Unfortunately, the real-life situation is

muh more ompliated.

Kurie plot for allowed proesses is a sensitive test of mβ ,

while the �rst order forbidden proesses should have a

distorted Kurie plot.

In an atual experiment, the measurable quantity is a sum of β spetra, leading eah with probability

Pn = Pn(E0 − Vn − E) to a �nal state n of exitation energy Vn:

dΓ (T,Q)

dT
7−→

∑

n

Pn (E0 − Vn −E)
dΓ (T,E0 − Vn)

dT
.

Here E0 = Q− E the ground-state energy and E is the reoil energy of the daughter nuleus.

21



2.2.1 Tritium beta deay.

An important issue is the deay of

moleular tritium T2 →
(

3

HeT

)+
+ e− + νe.

Considering the most preise diret

determination of the mass di�erene

m(T)−m
(

3

He

)
= (18590.1± 1.7) eV/c2

and taking into aount the reoil and

apparative e�ets (these are taken for the

Mainz experiment) one derives an endpoint

energy of the moleular ion

(
3

HeT

)+

ground

state:

E0 = (18574.3± 1.7) eV.

The exitation spetrum is shown in the

�gure. The �rst group onerns rotational and

vibrational exitation of the moleule in its

eletroni ground state; it omprises a fration

of Pg = 57.4% of the total rate.

Exitation spetrum of the daughter moleular ion(
3

HeT

)+

in β deay of moleular tritium.

For more details, see C. Kraus et al., �Final results from phase II of the Mainz neutrino mass searh in tritium

β deay,� Eur. Phys. J. C 40 (2005) 447�468, hep-ex/0412056.
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Curran, Angus & Cockroft

Hanna & Pontecorvo

Langer & Moffat
Hamilton, Alford & Gross

Bergkvist

ITEP (1)

ITEP (2)

Zurich

INS (Tokyo)
Los Alamos

Mainz

Troitsk

Troitsk
Mainz Troitsk

Karlsruhe

arXiv:1909.06048 [hep-ex]

KATRIN

© 1948 Nature Publ. Group

Nature 162 (1948) 302-303

Progress of the neutrino mass measurements in

tritium β deay, inluding the �nal Mainz phase II,

Troitsk, and KATRIN upper limits (see below).

[The ompilation is taken from V. M. Lobashev, �Diret searh

for mass of neutrino,� in Proeedings of the 18th International

Conferene on Physis in Collision (�PIC 98�), Frasati, June 17�

19, 1998, pp. 179�194 and supplemented with the reent data.℄

⊳ The history of the searh for the

neutrino mass in the tritium β deay

ounts more than 60 years. In 1980,

the steady improvement of the upper

limit was suddenly speeded up by a

report of the ITEP group (Mosow)

on the observation of the nonzero

neutrino mass e�et in the β-spetrum

in the valine moleule (C5H9T2NO2).

The reported result was

a

14 ≤ mβ ≤ 46 eV/c2 (99% C.L.)

This researh stimulated more than

20 experimental proposals with an

intention to hek this lime. Alas!. . .
in several years the experimental groups

from Z�urih, Tokyo, Los Alamos, and

then Livermore refuted the ITEP result.

a

V. A. Lyubimov, E. G. Novikov,

V. Z. Nozik, E. F. Tretyakov, and V. S. Kosik,

�An estimate of the νe mass from the β-

spetrum of tritium in the valine moleule,�

Phys. Lett. B 94 (1980) 266�268 (∼ 500

itations in InSPIRE! by the end of 2021).
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The top �gure shows the data points

from the tail of the β-spetrum measured

in the Los Alamos tritium experiment

ompared with the expeted values (the

straight line) for mβ = 30 eV. The data

wander from the line, ruling out the

possibility of a 30-eV neutrino.

The bottom �gure shows the same data

points ompared with the expetation for

mβ = 0. While the data learly favor a

neutrino mass of zero, the best �t is

atually for a slightly negativemβ . (Note

that in the bottom plot, the data points

lie, on average, slightly above the line, so

this is not a perfet �t.)

Both plots display �residuals,� whih

indiate how many standard deviations

eah data point is from a partiular

hypothesis.
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Did the neutrino weigh 30 eletron volts?

[Borrowed from T. J. Bowles and R. G. H. Robertson, �Tritium beta deay and the searh for neutrino mass,� Los

Alamos Si. 25 (1997) 6�11.℄
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Publ. year

2
m

  
 (

eV
 /

c
  

)
2

4

β
PHYSICAL SECTOR

Mainz 1998-2001 final (2005):

m  = -0.6   2.2       2.1     eV /c
β

Troitsk 1994-2004 reanalised (2011):

m  = -0.67   1.89       1.68     eV /c
β

2+
−  stat syst

+
−

4

2+
−  stat syst

+
−

4

2

2

Bejing

Livermore
Los Alamos
Mainz
Tokyo
Troitsk
Troitsk (step fcn)
Troitsk (reanalized)
Zurich..

~~
~~

KATRIN

KATRIN 2nd compaign (2021):

m  = 0.26   0.34 eV /c 
β

2 42 +
− At last!

KATRIN 2021

⊳ The �gure shows the results on them2
β

measurements in the tritium β deay

experiments reported after 1990.

The already �nished experiments at

Los Alamos, Z�urih, Tokyo, Beijing and

Livermore used magneti spetrometers,

while the experiments at Troitsk (ν mass),

Mainz, and Karlsruhe (KATRIN) are using

high-resolution eletrostati �lters with

magneti adiabati ollimation.

The progress in the observable mβ of

the latest Mainz, Troitsk, and KATRIN

results as ompared to the most sensitive

earlier experiments approahes two orders

of magnitude.

[The �gure in this slide inludes the data from C. Kraus et al., Eur. Phys. J. C 40 (2005) 447�468, hep-ex/0412056;

V. N. Aseev et al., Phys. Rev. D 84 (2011) 112003, arXiv:1108.5034 [hep-ex℄; M. Aker et al., Phys. Rev. Lett. 123

(2019) 221802, arXiv:1909.06048 [hep-ex℄ M. Aker et al., arXiv:2105.08533 [hep-ex℄. ℄

The negative m2
β most probably was �instrumental�. After KATRIN (2021), only a very small spae remains

for fans of heterodox models with tahyoni neutrino states (more generally � superpositions of bradyon-luxon-

tahyon states), pseudotahyoni (m2
ν < 0, v = E/p), or perhaps superbradyoni (mν > 0, v > 1) neutrinos.
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2.2.2 Summary of the KATRIN result from the �rst siene run (KNM1).

The best �t value of the e�etive neutrino mass square was found to be

a

m2
β =

(
−1.0+0.9

−1.1

)

eV

2.

This result orresponds to a 1σ statistial

�utuation to negative values of m2
β

possessing a p-value of 0.16. The total

unertainty budget of m2
β is largely dominated

by σ

stat

(0.97 eV

2

) as ompared to σ

syst

(0.32 eV

2

). These unertainties are smaller by

a fator of 2 and 6, respetively, ompared to

the �nal results of Troitsk and Mainz.

KATRIN data with 1σ errorbars   50 

Fit result

18535               18555               18575                18595               18615

Retarding energy (eV)

C
ou

n
t 

ra
te

 (
cp

s)

1

10

Spectrum of electrons over a 90 eV-wide interval
from all 274 tritium scans and best-fit model

The methods of Lokhov and Tkahov (LT) and of Feldman and Cousins (FC) are then used to

alulate the upper limit on the absolute mass sale of neutrino:

mβ < 1.1 eV at 90% C.L. (LT), mβ < 0.8 (0.9) eV at 90 (95)% C.L. (FC).

The LT value (the entral result of the experiment) oinides with the KATRIN sensitivity. It is based

on a purely kinemati method and improves upon previous works by almost a fator of two after a

measuring period of only four weeks while operating at redued olumn density.

After 1000 days of data taking at nominal olumn density and further redutions of systematis the

Karlsruhe Tritium Neutrino experiment KATRIN will reah a sensitivity of 0.2 eV (90% C.L.) on mβ .

a

M. Aker et al., �An improved upper limit on the neutrino mass from a diret kinemati method by KATRIN,�

Phys. Rev. Lett. 123 (2019) 221802, arXiv:1909.06048 [hep-ex℄.
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2.2.3 Summary of the KATRIN result from the seond siene run (KNM2).

In the 2nd physis run, the soure ativity was inreased by a fator of 3.8 and the bakground was

redued by 25% with respet to the 1st ampaign.

a

A sensitivity on mβ of 0.7 eV at 90% C.L. was

reahed. This is the �rst sub-eV sensitivity from a diret neutrino-mass experiment.

β

P
H

Y
S
IC

A
L
 S

E
C

T
O

R
The best �t to the spetral data yields

mβ = 0.26± 0.34 eV, resulting in an upper

limit of mβ < 0.9 eV (90% C.L.), using

the Lokhov-Tkahov method. The Feldman-

Cousins tehnique yields the same limit. The

resulting Bayesian limit at 90% C.L. is

mβ < 0.85 eV.

A simultaneous �t of both KNM1 and KNM2

data sets yieldsmβ = 0.1± 0.3 eV, resulting an

improved limit of mβ < 0.8 eV (90% C.L.).

As both data sets are statistis-dominated,

orrelated systemati unertainties between

both ampaigns are negligible.

⊳ The �gure displays the evolution of

best-�t mβ results from historial ν-mass

measurements (.f. p. 25).

mβ < 0.9 eV at 90 % C.L. (KNM2), mβ < 0.8 eV at 90 % C.L. (KNM1+KNM2).

a

M. Aker et al., �First diret neutrino-mass measurement with sub-eV sensitivity�, Nature Phys. 18 (2022)

160�166, arXiv:2105.08533 [hep-ex℄; see also arXiv:2203.08059 [nul-ex℄, submitted to Nature Physis.
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3 Majorana neutrinos.

The harge onjugated bispinor �eld ψc

is de�ned by the transformation

ψ 7−→ ψc = CψT , ψ 7−→ ψc = −ψTC,

where C is the harge-onjugation matrix whih satis�es the onditions

CγT
αC
† = −γα, CγT

5 C
† = γ5, C† = C−1 = C, CT = −C,

and thus oinides (up to a phase fator) with the inversion of the axes x0

and x2: C = γ0γ2.

Clearly the harged fermion �eld ψ is di�erent from the harge-onjugated

�eld ψc

but a neutral fermion �eld ν an oinide with the harge-onjugated one νc

. In other words:

for a neutral fermion (neutrino, neutralino) �eld ν(x) the following ondition is not forbidden:

a

νc(x) = ν(x) (Majorana ondition) ⇐⇒ Majorana neutrino and antineutrino oinide!

A few more details: In the hiral representation

ν =

(
φ

χ

)
, νc = CνT =

(
−σ2χ∗

+σ2φ∗

)
. =⇒

{
φ = −σ2χ

∗,

χ = +σ2φ
∗ =⇒ φ+ χ = σ2 (φ− χ)∗.

The Majorana neutrino is two-omponent, i.e., it is de�ned by only one hiral projetion. Then (.f. p. 9)

νL = PLν =

(
φ− χ

χ− φ

)

and νR = PRν =

(
φ+ χ

φ+ χ

)
= νc

L. =⇒ ν = νL + νR = νL + νc
L.

a

The simplest generalization of the Majorana ondition, νc(x) = eiϕν(x) (ϕ = onst), is not very interesting.
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The Majorana mass term in the general N -neutrino ase is [Gribov & Ponteorvo (1969)℄:

L

M

(x) = −1

2
νc

L(x)M

M

νL(x) + H..,

Here M

M

is a N ×N omplex nondiagonal matrix and, in general, N ≥ 3.

It an be proved that the M

M

should be symmetri, M
T

M

= M

M

. Assuming for simpliity that its

spetrum is non-degenerated, the mass matrix an be diagonalized by means of the following

transformation [Bilenky & Petov (1987)℄

M

M

= V
∗
mV

†, m = ||mkδkl|| = diag (m1,m2, . . . ,mN ),

where V is a unitary matrix and mk ≥ 0. Therefore

L

M

(x) = −1

2

[
(ν′L)c

mν ′L + ν ′Lm(ν′L)c
]

= −1

2
ν′mν′ = −1

2

N∑

k=1

mkνkνk,

ν ′L = V
†νL, (ν′L)c = C

(
ν′L
)

T , ν′ = ν′L + (ν′L)c.

The last equality means that the �elds νk(x) are Majorana neutrino �elds. Considering that the

kineti term in the neutrino Lagrangian is transformed to

a

L0 =
i

2
ν ′(x)

←→
∂ ν′(x) =

i

2

∑

k

νk(x)
←→
∂ νk(x),

one an onlude that νk(x) is the �eld with the de�nite mass mk.

a

This also explains the origin of the fator 1/2 in the Majorana mass term.
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The �avor LH neutrino �elds νℓ,L(x) present in the standard weak lepton urrents are linear

ombinations of the LH omponents of the �elds of neutrinos with de�nite masses:

νL = Vν′
L or νℓ,L =

∑

k

Vℓkνk,L.

Of ourse neutrino mixing matrix V is not the same as in the ase of Dira neutrinos.

There is no global gauge transformations under whih the Majorana mass term (in its most

general form) ould be invariant. This implies that there are no onserved lepton harges that

ould allow us to distinguish Majorana νs and νs. In other words,

Majorana neutrinos are truly neutral fermions.

3.1 Parametrization of mixing matrix for Majorana neutrinos.

Sine the Majorana neutrinos are not rephasable, there may be a lot of extra phase fators in

the mixing matrix. The Lagrangian with the Majorana mass term is invariant with respet to

the transformation

ℓ 7→ eiaℓℓ, Vℓk 7→ e−iaℓVℓk
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Therefore N phases are unphysial and the number of the physial phases now is

N(N + 1)

2
−N =

N(N − 1)

2
=

(N − 1)(N − 2)

2︸ ︷︷ ︸

Dira phases

+ (N − 1)︸ ︷︷ ︸

Majorana phases

= n

D

+ n

M

;

n

M

(2) = 1, n

M

(3) = 2, n

M

(4) = 3, . . .

In fat all phases are Majorana and the above notation is provisional and unorthodox.

In the ase of three lepton generations one de�nes the diagonal matrix with the extra phase fators:

Γ

M

= diag

(
eiα1/2, eiα2/2, 1

)
, where α1,2 are ommonly referred to as the Majorana CP -violation

phases. Then the PMNS matrix an be parametrized as

V

(M)

= O23Γ

D

O13Γ †

D

O12Γ

M

= V

(D)

Γ

M

=




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13






eiα1/2 0 0

0 eiα2/2 0

0 0 1


 ,

Neither Lℓ nor L =
∑

ℓ
Lℓ is now onserved allowing a lot of new proesses, for example,

τ− → e+(µ+)π−π−, τ− → e+(µ+)π−K−, π− → µ+νe, K+ → π−µ+e+

, K+ → π0e+νe,

D+ → K−µ+µ+

, B+ → K−e+µ+

, Ξ− → pµ−µ−, Λ+
c → Σ−µ+µ+

, et.

Needless to say that no one was disovered yet [see RPP℄ but (may be!?) the (ββ)0ν deay.

The following setion will disuss this issue with some detail.
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3.2 Neutrinoless double beta deay.

The theory with Majorana neutrinos allows the deay

(A,Z)→ (A,Z + 2) + 2e− [0νββ ≡ (ββ)0ν ]

with ∆L = 2. The deay rate for this proess is expressed as

follows:

[
T 0ν

1/2

]−1
= G0ν

Z |mββ |2
∣∣M0ν

F

− (gA/gV )2M0ν

GT

∣∣2,

where G0ν
Z is the two-body phase-spae fator inluding

oupling onstant, M0ν

F/GT

are the Fermi/Gamow-Teller

nulear matrix elements. The onstants gV and gA are the

vetor and axial-vetor relative weak oupling onstants,

respetively. The omplex parameter mββ is the e�etive

Majorana eletron neutrino mass given by

mββ =
∑

k

V 2
ekmk =

∑

k

|Vek|2eiφkmk

= |Ve1|2 m1 + |Ve2|2 m2e
iφ2 + |Ve3|2 m3e

iφ3 .

Here φ1 = 0, φ2 = α2 − α1 (pure Majorana phase) and

φ3 = −(α2 + 2δ) (mixture of Dira and Majorana CP -

violation phases).

eν

eν

e -

e -

W
-

W
-

n

n

p

p

Σ
k

d

d

d

u

d

u

e

e

kν

-

-

W
-

W
-

n

n

p

p

V
ek

V
ek

(ββ)2ν

(ββ)
0ν

u

u

d

u

d

u

d

d

d

u

d

u

u

u

d

u

d

u

32



The eletron sum energy spetrum

of the (ββ)2ν mode as well as of

the exoti modes with one or two

majorons in �nal state,

(A,Z)→ (A,Z + 2) + 2e− + χ,

(A,Z)→ (A,Z + 2) + 2e− + 2χ,

is ontinuous beause the available

energy release (Qββ) is shared

between the eletrons and other �nal

state partiles. In ontrast, the two

eletrons from the (ββ)0ν deay arry

the full available energy, and hene

the eletron sum energy spetrum

has a sharp peak at the Qββ value.

This feature allows one to distinguish

the (ββ)0ν deay signal from the

bakground.

The eletron sum energy spetra alulated for the di�erent

β deay modes of admium-116.

[From Y. Zdesenko, �Colloquium: The future of double beta deay

researh,� Rev. Mod. Phys. 74 (2003) 663�684.℄

Majoron is a Nambu-Goldstone boson, � a hypothetial neutral pseudosalar zero-mass partile whih ouples

to Majorana neutrinos and may be emitted in the neutrinoless β deay. It is a onsequene of the spontaneous

breaking of the global B − L symmetry.
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The urrently allowed ranges of

mββ observables of 0νββ deay is

shown as a funtion of the lightest

neutrino mass m0. In the ase of

normal (inverted) mass ordering the

ranges are shown by green (blue)

olor. The light (dark) olored

regions are omputed by taking into

aount (without taking aount)

the urrent 1σ unertainties of the

relevant mixing parameters.

Also shown are the limits on mββ

oming from KamLAND-Zen and

EXO-200 (by the light brown band

and arrow) and the bounds on m0

obtained by Plank.

Normal Ordering with uncertainty

Inverted Ordering with uncertainty
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Note that the �KamLAND-Zen+EXO200� bound spans a broad band (rather than a line) beause of

the nulear matrix element unertainty.

It is remarkable that the e�et of the 1σ unertainties of the mixing parameters is quite small. In

ontrast, variation over the Majorana phases gives muh larger impat on allowed region of mββ , not

only produing sizeable width but also reating a down-going branh at 10−3

eV . m0 . 10−2

eV for

the ase of the normal mass ordering due to the strong anellation of the three mass terms.

[From H. Minakata, H. Nunokawa, and A. A. Quiroga, �Constraining Majorana CP phase in the preision era of

osmology and the double beta deay experiment,� PTEP 2015 (2015) 033B03, arXiv:1402.6014 [hep-ph℄.℄
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4 See-saw mehanism.

4.1 Dira-Majorana mass term for one generation.

It is possible to onsider mixed models in whih both Majorana and Dira mass terms are present.

For simpliity sake we'll start with a toy model for one lepton generation.

Let us onsider a theory ontaining two independent neutrino �elds νL and νR:




νL would generally represent any ative neutrino (e.g., νL = νeL),

νR an represents a right handed �eld unrelated to any of these or

it an be harge onjugate of any of the ative neutrinos (e.g., νR = (νµL)c

).

We an write the following generi mass term between νL and νR:

Lm = − mD νLνR︸ ︷︷ ︸

Dira mass term

− (1/2) [mL νLν
c
L +mR ν

c
RνR]︸ ︷︷ ︸

Majorana mass term

+H.. (5)

⋆ As we know, the Dira mass term respets L while the Majorana mass term violates it.

⋆ The parameter mD in Eq. (5) is in general omplex; to simplify matters, we'll assume it to be

real but not neessarily positive.

⋆ The parameters mL, and mR in Eq. (5) an be hosen real and (by an appropriate rephasing the

�elds νL and νR) non-negative, but the latter is not assumed.

⋆ Obviously, neither νL nor νR is a mass eigenstate.
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In order to obtain the mass basis we an apply the useful identity

νLνR = (νR)c(νL)c
(6)

The identity (6) is a partiular ase of the more general relation

ψ1Γψ2 = ψ
c
2CΓ

TC−1ψc
1,

in whih ψ1,2 are Dira spinors and Γ represents an arbitrary ombination of the Dira γ matries.

Relation (6) allows us to rewrite Eq. (5) as follows

Lm = −1

2
(νL, (νR)c)

(
mL mD

mD mR

)(
(νL)c

νR

)
+ H.. ≡ −1

2
νLM (νL)c + H..

If (again for simpliity) CP onservation is assumed the matrix M an be diagonalized by the

orthogonal transformation that is rotation

V =

(
cos θ sin θ

− sin θ cos θ

)

with θ =
1

2
arctan

(
2mD

mR −mL

)
.

and we have

V
T

MV = diag(m1,m2),

where m1,2 are eigenvalues of M given by

m1,2 =
1

2

(
mL +mR ±

√
(mL −mR)2 + 4m2

D

)
.
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The eigenvalues are real if (as we assume) mD,L,R are real, but not neessarily positive. Let

us de�ne ζk = signmk and rewrite the mass term in the new basis:

Lm = −1

2
[ζ1 |m1| ν1L (ν1L)

c
+ ζ2 |m2| (ν2R)

c
ν2R] + H.., (7)

The new �elds ν1L and ν2R represent hiral omponents of two di�erent neutrino states with

�masses� m1 and m2, respetively:

(
νL

νcR

)
= V

(
ν1L

νc2R

)
=⇒

{
ν1L= cos θ νL − sin θ νcR,

ν2R= sin θ νcL + cos θ νR.

Now we de�ne two 4-omponent �elds

ν1 = ν1L + ζ1 (ν1L)
c

and ν2 = ν2R + ζ2 (ν2R)
c
.

Certainly, these �elds are self-onjugate with respet to the C transformation:

νck = ζkνk (k = 1, 2)

and therefore they desribe Majorana neutrinos. In terms of these �elds Eq. (7) reads

Lm = −1

2
(|m1| ν1ν1 + |m2| ν2ν2). (8)

We an onlude therefore that νk(x) is the Majorana neutrino �eld with the de�nite

(physial) mass |mk|.
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There are several speial ases of the Dira-Majorana mass matrix M whih are of onsiderable

phenomenologial importane, in partiular,

(A): M =

(
0 m

m 0

)
=⇒ |m1,2| = m, θ =

π

4

(maximal mixing).

Two Majorana �elds are equivalent to one Dira �eld.

A generalization |mL,R| ≪ |mD|, leads to the so-alled

Pseudo-Dira neutrinos.

(B): M =

(
mL m

m mL

)
=⇒ m1,2 = mL ±mD, θ =

π

4
(maximal mixing);

(C): M =

(
0 m

m M

)

or, more generally, |mL| ≪ |mR|, mD > 0.

The see-saw

The ase (C) with m≪M is the simplest example of the see-saw mehanism. It leads to two

masses, one very large, m1 ≈M , other very small, m2 ≈ −m2/M ≪ m, suppressed ompared to the

entries in M. In partiular, one an assume

m ∼ mℓ or mq (0.5 MeV to 200 GeV) and M ∼M

GUT

∼ 1015−16

GeV.

Then |m2| an ranges from ∼ 10−14
eV to ∼ 0.04 eV. The mixing between the heavy and light

neutrinos is extremely small: θ ≈ m/M ∼ 10−20 − 10−13 ≪ 1.
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If one eigenvalue goes up, the other

goes down, and vie versa. This is the

reason of the term see-saw...

a bit intriate for so simple idea...
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4.2 More neutral fermions.

A generalization of the above sheme to N generations is almost straightforward but tehnially

rather umbersome. Let's onsider it shematially for the N = 3 ase.

⊲ If neutral fermions are added to the set of the SM �elds, then the �avour neutrinos an aquire

mass by mixing with them.

⊲ The additional fermions an be

a

• Gauge hiral singlets per family N (e.g., right-handed neutrinos) [Type I seesaw℄, or

• SU(2)× U(1) doublets (e.g., Higgsino in SUSY), or

• Y = 0, SU(2)L triplets Σ (e.g., Wino in SUSY) [Type III seesaw℄.

⊲ Addition of three right-handed neutrinos NiR leads to the see-saw mehanism with the following

mass terms:

Lm = −
∑

ij

[
νiLM

D
ijNjR − 1

2
(NiR)c MR

ijNjR + H..

]
.

⊲ The above equation leads to the following 6× 6 see-saw mass matrix:

M =

(
0 mT

D

mD MR

)
.

Both mD and MR are 3× 3 matries in the generation spae.

a

Type II seesaw operates with additional SU(2)L salar triplets ∆.
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Similar to the one-generation ase we assume that the eigenvalues of MR are large in omparison

with the eigenvalues of mD. Then M an be approximately blok-diagonalized by an unitary

transformation:

U
†
MU = diag (M1,M2) +O

(
mDM

−1
R

)
,

where

U =



1 +
1

2
m
†
D

(
MRM

†
R

)−1
mD m

†
D

(
M
†
R

)−1

−M−1
R mD 1 +

1

2
M−1

R mDm
†
D

(
M
†
R

)−1



.

M1 ≃MR and M2 ≃ −m
T
DM

−1
R mD

The mass eigen�elds are surely Majorana neutrinos.

• Quadrati see-saw: If eigenvalues of MR are of the order of a large sale parameter M ∼M

GUT

a

[e.g., MR = M1℄ than the standard neutrino masses are suppressed:

mi ∼ m2
Di

M
≪ mDi,

Here mDi ∼ Yi〈H〉 are the eigenvalues of mD. As long as these eigenvalues (or Yukawa

ouplings Yi) are hierarhial, the Majorana neutrino masses display quadrati hierarhy:

m1 : m2 : m3 ∝ m2
D1 : m2

D2 : m2
D3.

a

Large M is natural in, e.g., SO(10) inspired GUT models whih therefore provide a nie framework to

understand small neutrino masses.
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• Linear see-saw: In a more speial ase, MR = (M/MD)MD, where MD is the generi sale of

the harged fermion masses than

mi ∼ MDmDi

M
≪ mDi

but the hierarhy is linear:

m1 : m2 : m3 ∝ mD1 : mD2 : mD3.

The two mentioned possibilities are, in priniple, experimentally distinguishable.
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Beyond this setion

✦ Double see-saw

∗

✦ Inverse see-saw

∗

✦ Radiative see-saw

∗

✦ SUSY & SUGRA see-saw

✦ TeV-sale gauged B − L symmetry

∗

✦ TeV see-saw & large extra dimensions

✦ See-saw & Dark Matter

✦ See-saw & Leptogenesis

✦ See-saw & Baryogenesis

✦ Dira see-saw

✦ Top (top-bottom) see-saw

✦ Casade see-saw

✦ ...

∗

See Bakup.

Conlusions (not really on�rmed)

• The �mainstream� ν mass models, de�ned as see-saw models, are apable of

desribing the atmospheri�reator�aelerator ν osillation data, the LMA

MSW solar neutrino solution, and osmologial limits. The SM and MSSM

may naturally be extended to inorporate the see-saw mehanism.

• [A �y in the ointment℄ Wealth of the models (≫ number of the authors of

the models) greatly ompliates the hoie of the best one.
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4.3 Here's what we know today (we're getting ahead of ourselves).

W
i
t
h

S
K

a
t
m

o
s
p
h
e
r
i


d
a
t
a

Normal Ordering (best �t) Inverted Ordering (∆χ2 = 7.0)

bfp ±1σ 3σ range bfp ±1σ 3σ range

sin2 θ12 0.304+0.012
−0.012 0.269→ 0.343 0.304+0.013

−0.012 0.269→ 0.343

θ12/
◦ 33.45+0.77

−0.75 31.27→ 35.87 33.45+0.78
−0.75 31.27→ 35.87

sin2 θ23 0.450+0.019
−0.016 0.408→ 0.603 0.570+0.016

−0.022 0.410→ 0.613

θ23/
◦ 42.1+1.1

−0.9 39.7→ 50.9 49.0+0.9
−1.3 39.8→ 51.6

sin2 θ13 0.02246+0.00062
−0.00062 0.02060→ 0.02435 0.02241+0.00074

−0.00062 0.02055→ 0.02457

θ13/
◦ 8.62+0.12

−0.12 8.25→ 8.98 8.61+0.14
−0.12 8.24→ 9.02

δCP/
◦ 230+36

−25 144→ 350 278+22
−30 194→ 345

∆m2
21

10−5

eV

2 7.42+0.21
−0.20 6.82→ 8.04 7.42+0.21

−0.20 6.82→ 8.04

∆m2
3ℓ

10−3

eV

2 +2.510+0.027
−0.027 +2.430→ +2.593 −2.490+0.026

−0.028 −2.574→ −2.410

Three-�avor osillation parameters from a reent �t to global data (�NuFIT 5.1�) performed by the

NuFIT team. Note that ∆m2
3ℓ ≡ ∆m2

31 > 0 for NO and ∆m2
3ℓ ≡ ∆m2

32 < 0 for IO.

[See I. Esteban et al. (The NuFIT team), �The fate of hints: updated global analysis of three-�avor neutrino osillations,�

JHEP09(2020)178, arXiv:2007.14792 [hep-ph℄. Present update (Otober 2021) is from 〈 http://www.nu-�t.org/ 〉.℄
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List of data used in the NuFIT 5.1 analysis (Otober 2021)

Solar experiments:

Homestake hlorine total rate (1 dp), Gallex & GNO total rates (2 dp), SAGE total rate (1 dp), SK-I full

energy and zenith spetrum (44 dp), SK-II full energy and day/night spetrum (33 dp), SK-III full

energy and day/night spetrum (42 dp), SK-IV 2970-day day-night asymmetry and energy spetrum

(24 dp), SNO ombined analysis (7 dp), Borexino Phase-I 741-day low-energy data (33 dp), Borexino

Phase-I 246-day high-energy data (6 dp), Borexino Phase-II 408-day low-energy data (42 dp).

Atmospheri experiments:

IeCube/DeepCore 3-year data (64 dp), SK-I�IV 364.8 kiloton years + χ2
map.

Reator experiments:

KamLAND separate DS1, DS2, DS3 spetra with Daya-Bay reator νe �uxes (69 dp), Double-Chooz

FD/ND spetral ratio, with 1276-day (FD), 587-day (ND) exposures (26 dp), Daya-Bay 1958-day

EH2/EH1 and EH3/EH1 spetral ratios (52 dp), RENO 2908-day FD/ND spetral ratio (45 dp).

Aelerator experiments:

MINOS 10.71 PoT20 νµ-disappearane data (39 dp), MINOS 3.36 PoT20 νµ-disappearane data

(14 dp), MINOS 10.60 PoT20 νe-appearane data (5 dp), MINOS 3.30 PoT20 νe-appearane (5 dp),

T2K 19.7 PoT20 νµ-disappearane data (35 dp), T2K 19.7 PoT20 νe-appearane data (23 dp for the

CCQE and 16 dp for CC1π samples), T2K 16.3 PoT20 νµ-disappearane data (35 dp), T2K

16.3 PoT20 νe-appearane data (23 dp), NOvA 13.6 PoT20 νµ-disappearane data (76 dp), NOvA

13.6 PoT20 νe-appearane data (13 dp), NOvA 12.5 PoT20 νµ-disappearane data (76 dp), NOvA

12.5 PoT20 νe-appearane data (13 dp).

Here dp = data point(s), PoT20 = 1020

PoT (Protons on Target), and EH = Experiment Hall.
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4.3.1 Neutrino osillation parameter plot.

The regions of neutrino squared-mass splitting

∆m2 =
∣∣∆m2

ij

∣∣ =
∣∣m2

j −m2
i

∣∣

and tan2 θ (where θ is one of the mixing angles

θij orresponding to a partiular experiment)

favored or exluded by various experiments.

Contributed to RPP-2018

a

by Hitoshi Murayama

(University of California, Berkeley).

Figure inludes the most rigorous results from

before 2018, but data from many earlier

experiments (e.g., BUST, NUSEX, Fr�ejus, IMB,

Kamiokande, MACRO, SOUDAN2) are ignored.

a

M. Tanabashi et al. (Partile Data Group), �Review

of Partile Physis�, Phys. Rev. D 98 (2018) 030001.
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In the absene of CP violation, the mixing

angles may be represented as Euler angles

relating the �avor eigenstates to the mass

eigenstates. ⊲

Aording to the NuFIT analysis (p. 45),

the best-�t mixing angles and δ for the

normal mass ordering (a bit preferred) are:

PNMS CKM

θ12/
◦ 33.45+0.77

−0.75 13.04 ± 0.05

θ23/
◦ 42.1+1.1

−0.9 2.38 ± 0.06

θ13/
◦ 8.62+0.12

−0.12 0.201 ± 0.011

δ◦ 230+36
−25 68.8 ± 4.5

The CKM angles and CP phase are also

shown for omparison.

It should be stressed that the neutrino mass

spetrum is still undetermined. ⊲

[Figures (slightly modi�ed and updated) are taken

from S. F. King, �Neutrino mass and mixing in the

seesaw playground,� arXiv:1511.03831 [hep-ph℄.℄

ν1
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ν3

νµ

ντ

νe

θ12

θ13

θ23

θ13

θ12

θ23

0

solar~7.4 10−5eV2
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~2.5 10−3eV2
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~2.5 10−3eV2

m1
2
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2

m3
2

0

m2
2

m1
2
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2

e µ
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solar~7.4 10−5eV2

+

+

+

+

τ
ν ν ν
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Flavor ontent of mass states and mass ontent of �avor states is the same for Dira ν and ν (CP

phase δ only hanges the sign for ν) and for Majorana left/right νs (

∣∣V D

αi

∣∣ =
∣∣V M

αi

∣∣

).
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4.3.2 Flavor ontent of mass states and mass ontent of �avor states.

(
|Vαi|2

)

NH

=




0.681 0.297 0.0225

0.130 0.430 0.439

0.189 0.273 0.538


 ,

(
|Vαi|2

)

IH

=




0.681 0.297 0.0224

0.149 0.294 0.557

0.170 0.409 0.421


 .

νe

νe

νµ

νµ

ντ

ντ

νe

νe

νµ

νµ

ντ

ντ

νe

νµ

νµ

ντ

ντ

ν1

ν1

ν1

ν1

ν1
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ν

ν2
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ν3

ν3
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ν3

ν 1 ν 3ν 2

ν e ν 
τ

ν 
µ
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2
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4.3.3 Current status of the neutrino masses from osillation experiments.

So, NuFIT 5.1 provides the following onstraints for the mass squared splittings:

m2
2 −m2

1 = 7.42+0.21
−0.20 × 10−5

eV

2

(�solar� for NH and IH)

m2
3 −m2

1 = 2.51+0.027
−0.027 × 10−3

eV

2

(�atmospheri� for NH)

m2
2 −m2

3 = 2.49+0.026
−0.028 × 10−3

eV

2

(�atmospheri� for IH)

These result imply that at least two of the neutrino eigen�elds have nonzero masses and thus there

are (at least) two very di�erent possible senarios related to the mass ordering:

m1 ≪ m2 < m3 (for NH) or m3 ≪ m1 < m2 (for IH).

The data on ∆m2
ij give the following estimates (heneforth

∑
mν ≡

∑3

i=1
mi):

{
m2 = (8.61± 0.122)× 10−3

eV,

m3 = (5.01± 0.027)× 10−2

eV,
=⇒

∑
mν ≥ m2 +m3 = 0.0587± 0.0003 eV (for NH) (9)

{
m2 = (4.99± 0.028) × 10−2

eV,

m1 = (4.92± 0.029) × 10−2

eV,
=⇒

∑
mν ≥ m1 +m1 = 0.0983± 0.0006 eV (for IH) (10)

Therefore, the lower bounds on

∑
mν at 1σ C.L. are:

∑
mNH

ν > 0.0584 eV and

∑
mIH

ν > 0.0977 eV.

Note: Current aelerator and reator data favor the NH senario, but the question is not yet losed.

50



(3−5)σ determination of

neutrino mass hierarchy

in 3/4 years

& RENO-50

+ T2K

+ Reactor exp.
    (DB, RENO, DC,...)

(KM3NeT) (IceCube-Gen2)

Cosmology
After M.Blennow

A summary of sensitivities to the neutrino mass hierarhy for various experimental approahes, with

timesales, as laimed by the proponents in eah ase. Widths indiate main expeted unertainty.
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CνB.

Relit neutrinos (or Cosmi Neutrino Bakground, or CNB, or CνB) produe the largest neutrino �ux

on Earth, but ompose only a very small fration of invisible (non-luminous) matter in the Universe.

Dark Energy ~ 69%
[Cosmological Constant (?)]

Dark Matter ~ 26%
[presumably cold]

Neutrinos 0.1−0.3%
[Hot DM (?)]

Ordinary Matter ~ 5%
[of this only ~10% is luminous]

+ Radiation ~ 0.001%

Ω   = 0.685(7)Λ

Ω   = 0.265(7)c 

Ω     = 0.9993(19)tot 

Planck 2018  (TT, TE, EE + lowE + lensing) & BAO

0.0012 < Ω  < 0.003nΩ   = 0.0493(6)b 

Ω   = 0.315(7)m Nn
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CMB as a probe of CνB.

It is not yet realisti

to diretly detet the

νs reated within

the �rst seond after

the Big Bang, and

whih have too little

energy now. However,

for the �rst time,

Plank, ESA's mission

has unambiguously

deteted the e�et

CνB has on reli

radiation maps. The

quality of these maps

is now suh that the

imprints left by dark

matter and reli νs

are learly visible.

a
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a

See N. Aghanim et al. (Plank Collaboration), �Plank 2018 results. I. Overview and the osmologial

legay of Plank�, Astron. Astrophys. 641 (2020) A1, arXiv:1807.06205 [astro-ph.CO℄; �Plank 2018 results.

VI. Cosmologial parameters�, Astron. Astrophys. 641 (2020) A6, arXiv:1807.06209 [astro-ph.CO℄.
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The reli photon spetrum almost

exatly follows the blakbody

spetrum with temperature

T0 = 2.7255± 0.0006 K.

After many deades of experi-

mental and theoretial e�orts, the

CMB is known to be almost

isotropi but having small tem-

perature �utuations (alled CMB

anisotropy) with amplitude

δT ∼
(
10−5 − 10−3

)
.

These �utuations an be

deomposed in a sum of spherial

harmonis Ylm(θ, φ)

δT (θ, φ) =

∞∑

l=1

l∑

m=−l

almYlm(θ, φ).

The averaged squared oe�ients

alm give the variane

Cl = 〈|alm|2〉 =
1

2l + 1

l∑

m=−l

|alm|2.
CMB maps an be ompressed into the power spetrum

TT
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Plank 2018: neutrino summary.
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Suessive redutions in the allowed parameter spae for various one-parameter extensions to ΛCDM,

from pre-WMAP (MAXIMA, DASI, BOOMERANG, VSA, CBI) to Plank. The ontours display the

68% and 95% C.L. for the extra parameter vs. �ve other base-ΛCDM parameters. The dashed lines

indiate the ΛCDM best-�t parameters or �xed default values of the extended parameters.

[Adopted from Aghanim et al. (Plank Collaboration), �Plank 2018 results. I. Overview and the osmologial legay of

Plank�, Astron. Astrophys. 641 (2020) A1, arXiv:1807.06205 [astro-ph.CO℄;℄
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Finally Plank 2018 (+BAO) sets:

∑
mν < 0.12 eV, N

e�

= 2.99 ± 0.17, ∆N

e�

< 0.3.

Here N

e�

is the e�etive number or neutrino speies; roughly speaking, N

e�

≃ 3 means that

additional light neutrinos are not supported (although not exluded) by Plank.

But(!) this onstraint implies degenerate mass hierarhy (DH), mi =
∑

mν/3, and many other

model assumptions. Results for other ν mass spetra have been obtained reently (m0 ≡ mmin):
a

Let's reall the latest osillation lower limits:

∑
mNH

ν & 0.058 eV and

∑
mIH

ν & 0.098 eV.

a

Sh. R. Choudhury & S. Hannestad, �Updated results on neutrino mass and mass hierarhy from osmology

with Plank 2018 likelihoods,� JCAP07(2020)037, arXiv:1907.12598 [astro-ph.CO℄.
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Afterward: Open problems in neutrino physis.

• Are neutrinos Dira or Majorana fermions?

• What is the absolute mass sale of (known) neutrinos?

Why neutrino masses are so small? [Does any version of see-saw work?℄

What is the neutrino mass spetrum? [sign(∆m2
32) ⇐⇒ NH or IH.℄

Can the lightest neutrinos be massless fermions? [Not quasipartiles in Weyl semimetals!℄

• Why neutrino mixing is so di�erent from quark mixing?

What physis is responsible for the otant degeneray? [sign(θ23 − 45◦).℄

• What are the soure and sale of CP/T violation in the neutrino setor?

How many CP violating phases are there?

• Is CPT onserved in the neutrino setor?

• How many neutrino �avors are there?

• Whether the number of neutrinos with de�nite masses is equal to or greater than the

number of �avor neutrinos? In other words, do sterile neutrinos exist?

a

If so,

◦ What is their mass spetrum?

◦ Do they mix with ative neutrinos?

◦ Do light (heavy) sterile neutrinos onstitute hot (old) dark matter?

• Are (all) neutrinos stable partiles?

a

Hints from LSND+MiniBooNE, Neutrino-4, SAGE+GALLEX+BEST are in tension with many other data.
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5 Quantum-mehanial treatment.

5.1 Angels & hippopotami.

Aording to the urrent theoretial understanding, the

neutrino �elds/states of de�nite �avor are superpositions of

the �elds/states with de�nite, generally di�erent masses [and

vie versa℄:

να =
∑

i

Vαiνi for neutrino �elds,

|να〉 =
∑

i

V ∗αi|νi〉 for neutrino states;

α = e, µ, τ , i = 1, 2, 3, . . .

Here Vαi are the elements of the Ponteorvo-Maki-Nakagawa-

Sakata neutrino vauum mixing matrix V.

This onept leads to the possibility of transitions between

di�erent �avor neutrinos, να ←→ νβ , phenomenon known

as neutrino �avor osillations.
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Let us introdue two types of neutrino eigenstates:

• The �avor neutrino eigenstates whih an be written as a vetor

|ν〉
f

= (|νe〉, |νµ〉, |ντ 〉, . . .)T ≡ (|να〉)T

are de�ned as the states whih orrespond to the harge leptons α = e, µ, τ . The orrespondene is

established through the harged urrent interations of ative neutrinos and harged leptons.

Together with the standard νs, |ν〉
f

may inlude also neutrino states allied with additional heavy harged

leptons, as well as the states not assoiated with harge leptons, like sterile neutrinos, νs.

In general, the �avor states have no de�nite masses. Therefore, they an have either de�nite

momentum, or de�nite energy but not both.

• The neutrino mass eigenstates

|ν〉
m

= (|ν1〉, |ν2〉, |ν3〉, . . .)T ≡ (|νk〉)T

are, by de�nition, the states with the de�nite masses mk, k = 1, 2, 3, . . ..

Sine |να〉 and |νk〉 are not idential, they are related to eah other through a unitary transformation

|να〉 =
∑

k

V̂αk|νk〉 or |ν〉
f

= V̂|ν〉
m
,

where V̂ =‖ V̂αk ‖ is a unitary (in general, N×N) matrix.
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To �nd out the orrespondene between V̂ and the PMNS mixing matrix V we an normalize the

�f � and �m� states by the following onditions

〈0|ναL(x)|να′〉 = δαα′

and 〈0|νkL(x)|νk′〉 = δkk′ .

From these onditions we obtain

∑

k

VαkV̂α′k = δαα′

and

∑

α

VαkV̂αk′ = δkk′ .

Therefore

V̂ ≡ V
†

and

|ν〉
f

= V
†|ν〉

m
⇐⇒ |ν〉

m
= V|ν〉

f
. (11)

The time evolution of a single mass eigenstate |νk〉 with momentum pν is trivial,

i
d

dt
|νk(t)〉 = Ek|νk(t)〉 =⇒ |νk(t)〉 = e−iEk(t−t0)|νk(t0)〉,

where Ek =
√
p2

ν +m2
k is the total energy in the state |νk〉. Now, assuming that all N states |νk〉

have the same momentum, one an write

i
d

dt
|ν(t)〉

m
= H0|ν(t)〉

m
, where H0 = diag (E1, E2, E3, . . .). (12)
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From Eqs. (11) and (12) we have

i
d

dt
|ν(t)〉

f
= V

†
H0V|ν(t)〉

f
. (13)

Solution to this equation is obvious:

|ν(t)〉
f

= V
†e−iH0(t−t0)

V |ν(t0)〉
f

= V
†

diag

(
e−iE1(t−t0), e−iE2(t−t0), . . .

)
V |ν(t0)〉

f
. (14)

Now we an derive the survival and transition probabilities

Pαβ(t− t0)= P [να(t0)→ νβ(t)]= |〈νβ(t)|να(t0)〉|2

=

∣∣∣
∑

k

VαkV
∗

βk exp [iEk(t− t0)]

∣∣∣
2

=
∑

jk

VαjVβk (VαkVβj)∗ exp [i(Ej − Ek)(t− t0)].

In the ultrarelativisti limit p2
ν ≫ m2

k, whih is undoubtedly valid for all interesting irumstanes

(exept reli neutrinos),

Ek =
√
p2

ν +m2
k ≈ pν +

m2
k

2pν
≈ Eν +

m2
k

2Eν
.
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Therefore in very good approximation

Pαβ(t− t0) =
∑

jk

VαjVβk (VαkVβj)∗ exp

[
i∆m2

jk(t− t0)

2Eν

]
.

As a rule, there is no way to measure t0 and t in the same experiment.

a

But it is usually possible to

measure the distane L between the soure and detetor. So we have to onnet t− t0 with L. It is

easy to do in the standard ultrarelativisti approximation,

vk =
pν

Ek
≃ 1− m2

k

2E2
ν

= 1− 0.5× 10−14
(

mk

0.1 eV

)2 (1 MeV

Eν

)2

≃ 1,

from whih it almost evidently follows that t− t0 ≈ L. Finally we arrive at the following formula

Pαβ(L) =
∑

jk

VαjVβk (VαkVβj)∗ exp

(
2iπL

Ljk

)
, Ljk =

4πEν

∆m2
jk

, (15)

where Ljk (or more exatly |Ljk| = |Lkj |) are the so-alled neutrino osillation lengths.

It is straightforward to prove that the QM formula satis�es the probability onservation law:

∑

α

Pαβ(L) =
∑

β

Pαβ(L) = 1.

The range of appliability of the standard quantum-mehanial approah is limited but enough for

the interpretation of essentially all modern experiments with aelerator, reator, atmospheri, solar,

and astrophysial neutrino beams.

a

Important exeptions will be disussed in the speial setion.
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5.2 Energy onservation.

Although the energy of the state with de�nite �avor, |να(L)〉 = |να(t)〉, is not de�ned, its mean

energy, 〈Eα(t)〉 = 〈να(t)|Ĥ|να(t)〉, is a well-de�ned and onserved quantity. Indeed,

〈Eα(t)〉 =
∑

ij

VαiV
∗

αj〈νi(p)|Ĥ|νj(p)〉 =
∑

ij

VαiV
∗

αj〈νi(p)|Ei|νj(p)〉 ≡ 〈Eα〉 = inv.

〈Eα〉 =
∑

i

|Vαi|2Ei ≃ p+
∑

i

|Vαi|2m
2
i

2p
, =⇒

∑

α

〈Eα〉 =
∑

i

Ei ≃ 3

(
p+

∑

i

m2
i

2p

)
.

Moreover, the mean energy of an arbitrary entangled state haraterized by a ertain density matrix

ρ(t) is also onserved. Indeed, let the initial state have the form

ρ(0) =
∑

α

wα|να(0)〉〈να(0)|,

The mean energy of the mixed state at arbitrary time t is then written as

〈E(t)〉 = Tr

(
Ĥρ(t)

)
= Tr

(
Ĥe−iĤtρ(0)eiĤt

)

=
∑

α

wα

∑

ij

V ∗αiVαje
−i(Ei−Ej )tEi Tr|νi(p)〉〈νj(p)|

=
∑

α

wα

∑

i

|Vαi|2Ei = inv, =⇒ 〈E(t)〉 =
∑

α

wα〈Eα〉.

Naturally, 〈E(t)〉 = 〈Eα〉 for the pure initial state |να(0)〉 (when ρ(0) = |να(0)〉〈να(0)|).
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5.3 Simplest example: two-�avor osillations.

Let's now onsider the simplest (toy) 2-�avor model, e.g., with i = 2, 3 and α = µ, τ (the most

favorable due to the SK and other underground experiments). The 2× 2 vauum mixing matrix an

be parametrized (due to the unitarity) with a single parameter, θ (= θ23), the vauum mixing angle,

V =

(
cos θ sin θ

− sin θ cos θ

)
, 0 ≤ θ ≤ π

2
.

In this model, Eq. (15) then beomes very simple and

transparent:

Pµτ (L) = Pτµ(L) =
1

2
sin2 2θ

[
1− cos

(
2πL

L

v

)]
,

L

v

≡ L23 =
4πEν

∆m2
23

≈ 2R⊕

(
Eν

10 GeV

)(
0.002 eV

2

∆m2
23

)
.

Here R⊕ is the mean radius of Earth and 10 GeV is a

typial energy in the (very wide) atmospheri neutrino

spetrum.

Sine Earth provides variable �baseline� [from about

15 km to about 12700 km℄, it is surprisingly suitable

for studying the atmospheri (as well as aelerator

and reator) neutrino osillations in rather wide range

of the osillation parameters.

https://universe-review.ca/R15-13-neutrino.htm
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Zenith angle and momentum distributions for atmospheri neutrino subsamples used for an analyses

by Super-Kamiokande to study subleading e�ets, preferenes for mass hierarhy and δ

CP

, as well as

searhes for astrophysial soures suh as dark matter annihilation.

[From T. Kajita et al. (for the Super-Kamiokande Collaboration), �Establishing atmospheri neutrino osillations with

Super-Kamiokande, �Nul. Phys. B 908 (2016) 14�29.℄
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The event spetra at MINOS from 10.71× 1020

POT FHC (νµ-dominated) mode, 3.36× 1020

POT

RHC (νµ-dominated) mode and 37.88 kt·yrs of atmospheri data. The data are shown ompared to

the predition in absene of osillations (grey lines) and to the best-�t predition (red). The beam

histograms (top) also inlude the NC bakground omponent (�lled grey) and the atmospheri

histograms (bottom) inlude the osmi-ray bakground ontribution �lled blue).

[From L. H. Whitehead (For the MINOS Collaboration), �Neutrino osillations with MINOS and MINOS+,� Nul. Phys.

B 908 (2016) 130�150.℄
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5.4 Summary of the standard QM theory.

The standard assumptions are intuitively transparent and (almost) ommonly aepted.

[1℄ The neutrino �avor states |να〉 assoiated with the harged leptons α = e, µ, τ (that is having

de�nite lepton numbers) are not idential to the neutrino mass eigenstates |νi〉 with the de�nite

masses mi (i = 1, 2, 3).

Both sets of states are orthonormal: 〈νβ |να〉 = δαβ , 〈νj |νi〉 = δij .

⇓

They are related to eah other through a unitary transformation V = ||Vαi||, VV† = 1,

|να〉 =
∑

i

V ∗αi|νi〉, |νi〉 =
∑

α

Vαi|να〉.

[2℄ Massive neutrino states originated from any reation or deay have the same de�nite momenta

pν [�equal momentum (EM) assumption�℄.

a

To simplify matter, we do not onsider exoti proesses with multiple neutrino prodution.

⇓

The �avor states |να〉 have the same momentum pν but have no de�nite mass and energy.

a

Sometimes � the same de�nite energies [�equal energy (EE) assumption�℄.
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[3℄ Neutrino masses are so small that in essentially all experimental irumstanes (or, more

preisely, in a wide lass of referene frames) the neutrinos are ultrarelativisti. Hene

Ek =
√

p2
ν +m2

k ≃ |pν |+ m2
k

2|pν |
.

[4℄ Moreover, in the evolution equation, one an safely replae the time parameter t by the distane

L between the neutrino soure and detetor. [Let's remind that ~ = c = 1.℄

The enumerated assumptions are su�ient to derive the nie and ommonly aepted expression for

the neutrino �avor transition probability [Ljk are the neutrino osillation lengths℄:

P (να → νβ ;L) ≡ Pαβ(L) =
∑

jk

VαjVβk (VαkVβj)∗ exp

(
2iπL

Ljk

)

=
∑

j

|Vαj |2 |Vβj |2 + 2
∑

j>k

[
Re

(
V ∗αjVβjVαkV

∗
βk

)
cos

(
2πL

Ljk

)

+ Im

(
V ∗αjVβjVαkV

∗
βk

)
sin

(
2πL

Ljk

)]
,

Ljk =
4πEν

∆m2
jk

, Eν = |pν |, ∆m2
jk = m2

j −m2
k.

Just this result is the basis for the �osillation interpretation� of the urrent experiments

with the natural and arti�ial neutrino and antineutrino beams.

69



5.5 Some hallenges against the QM approah.

� Equal-momentum assumption

Massive neutrinos νi have, by assumption, equal momenta: pi = pν (i = 1, 2, 3).

This key assumption seems to be unphysial being referene-frame (RF) dependent;

if it is true in a ertain RF then it is false in another RF moving with the veloity v:

E′i = Γv [Ei − (vpν)], p
′
i = pν + Γv

[
Γv(vpν)

Γv + 1
− Ei

]
v,

⇓ [assuming, as neessary for osillations, that mi 6= mj ] ⇓
p
′
i − p

′
j =

(
E′j − E′i

)
v = Γv (Ej − Ei) v 6= 0.

Treating the Lorentz transformation as ative, we onlude that the EM assumption annot be

applied to the non-monoenergeti ν beams (the ase in real-life experiments).

∗ A similar objetion exists against the alternative equal-energy assumption; in that ase

E′i −E′j = Γv (pj − pi) v 6= 0,
∣∣p′i − p

′
j

∣∣ =

√
|pi − pj |2 + Γ 2

v [(pi − pj) v]2 6= 0.

∗ Can the EM (or EE) assumption be at least a good approximation? Alas, no, it annot.

Let νµs arise from πµ2 deays. If the pion beam has a wide momentum spetrum � from subrelativisti

to ultrarelativisti (as it is, e.g., for osmi-ray partiles), the EM (or EE) ondition annot be valid

even approximately within the whole spetral range of the pion neutrinos.
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� Light-ray approximation

The propagation time T is, by assumption, equal to the distane L traveled by the neutrino

between prodution and detetion points. But, if the massive neutrino omponents have the

same momentum pν , their veloities are in fat di�erent:

vi =
pν√

p2
ν +m2

i

=⇒ |vi − vj | ≈
∆m2

ji

2E2
ν
.

One may naively expet that during the time T the neutrino νi travels the distane Li = |vi|T ;

therefore, there must be a spread in distanes of eah neutrino pair
δLij = Li − Lj ≈

∆m2
ji

2E2
ν
L, where L = cT = T .

∆m2
ji Eν L Lij |δLij |

∆m2
23 1 GeV 2R⊕ 0.1R⊕ ∼ 10−12

m

∆m2
23 1 TeV RG ∼ 100 kps 100R⊕ ∼ 10−4

m

∆m2
21 1 MeV 1 AU 0.25R⊕ ∼ 10−3

m

The values of δLij listed in the Table seem to be fantastially small. But

Are they su�iently small to preserve the oherene in any irumstane?

In other words:

What is the natural sale of the distanes and times?
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� Can light neutrinos osillate into heavy ones or vise versa?

[Can ative neutrinos osillate into sterile ones or vise versa?℄

The naive QM answer is Yes. Why not? If, at least, both να (light) and νs (heavy) are

ultrarelativisti [ |pν | ≫ max(m1,m2,m3, . . . ,M), ℄ one obtains the same formula for the

osillation probability Pαs(L), sine the QM formalism has no any limitation to the neutrino

mass hierarhy.

Possibility of suh transitions is a basis for many speulations in astrophysis and osmology.

But! Assume again that the neutrino soure is πµ2 deay and M > mπ. Then the transition

να → νs in the pion rest frame is forbidden by the energy onservation.

⇓

There must be some limitations & �aws in the QM formula. What are they?

� Do reli neutrinos osillate?

Most likely the lightest reli neutrinos are always relativisti or even ultrarelativisti, while

heavier ones beome subrelativisti and then non-relativisti as the universe expands.

The naive QM approah does not know how to handle suh a set of neutrinos.

� Does the motion of the neutrino soure a�et the transition probabilities?

To answer these and similar questions

one has to unload the UR approximation & develop a ovariant formalism.
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In the QFT approah: the e�etive (most probable) energies and momenta of virtual νis are found to be

funtions of the masses, most probable momenta and momentum spreads of all partiles (wave pakets)

involved into the neutrino prodution and detetion proesses.

In partiular, in the two limiting ases � ultrarelativisti (UR) and nonrelativisti (NR):

Ultrarelativisti ase

(|q0
s,d| ∼ |qs,d| ≫ mi)






Ei= Eν

[
1 − nri − mr2

i + . . .
]
,

|pi|= Eν

[
1 − (n + 1) ri −

(
m + n +

1

2

)
r2

i + . . .

]
,

vi= 1 − ri −

(
2n +

1

2

)
r2

i + . . . < 1,

Nonrelativisti ase

(|q0
s,d| ∼ mi ≫ |qs,d|)





Ei= mi +
miv

2
i

2

(
1 +

3

4
δi + . . .

)
,

|pi|= mivi

(
1 +

1

2
δi + . . .

)
,

vi≈
̺il

1 + ̺0
i

≪ 1,

p
s
i p

s
f

p
d
i p

d
f

q  = p  - p
d
f

d
i

d

ν
i

q  = p  - ps
f

s
i

s

Eν ≈ q0
s ≈ −q0

d, ri =
m2

i

2E2
ν

≪ 1 (UR),

̺µ
i =

1

miR

[
ℜ̃µ0

s

(
mi − q0

s

)
+ ℜ̃µ0

d

(
mi + q0

d

)
− ℜ̃µk

s qk
s + ℜ̃µk

d qk
d

]
, |̺µ

i | ≪ 1 (NR).
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� De�nite momentum assumption

In the naive QM approah, the assumed de�nite momenta of neutrinos (both να and νi) imply

that the spatial oordinates of neutrino prodution (Xs) and detetion (Xd) are fully unertain

(Heisenberg's priniple).

⇓

The distane L = |Xd −Xs| is unertain too, that makes the standard QM formula for the

�avor transition probabilities to be stritly speaking senseless.

In the orret theory, the neutrino momentum unertainty δ|pν | must be at least of the order of

min(1/Ds, 1/Dd), where Ds and Dd are the harateristi dimensions of the soure and

detetor �mahines� along the neutrino beam.

⇓

The neutrino states must be some wave pakets (WP) [though having very small spreads℄

dependent, in general, on the quantum states of the partiles [or, more exatly, also WPs℄ whih

partiipate in the prodution and detetion proesses.

In the QFT approah: the e�etive WPs of virtual UR νis are found to be

ψ
(∗)
i = exp

{
±i(piXs,d) −

D̃2
i

E2
ν

[
(piX)2 −m2

iX
2
]}

, X = Xd −Xs,

where pi = (Ei,pi) and Xs,d are the 4-vetors whih haraterize the spae-time loation of the ν

prodution and detetion proesses, while D̃i are ertain (in general, omplex-valued) funtions of

the masses, mean momenta and momentum spreads of all partiles involved into these proesses.

[D̃i/Eν and thereby ψi are Lorentz invariants.℄
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5.6 The aims and onepts of the �eld-

theoretial approah.

The main purposes:

To de�ne the domain of appliability of the standard

quantum-mehanial (QM) theory of vauum neutrino

osillations and obtain the QFT orretions to it.

The basi onepts:

• The �ν-osillation� phenomenon in QFT is nothing

else than a result of interferene of the marosopi

Feynman diagrams perturbatively desribing the lepton

number violating proesses with the massive neutrino

�elds as internal lines (propagators).

• The external lines of the marodiagrams are wave

pakets rather than plane waves (therefore the standard

S matrix approah should be revised).

• The external wave paket states are the ovariant

superpositions of the standard one-partile Fok states,

satisfying a orrespondene priniple.

x 1

x 2

π  +

n

τ  −

µ  +

p

ν i

Referenes: D. V. Naumov & VN, J. Phys. G 37 (2010) 105014, arXiv:1008.0306 [hep-ph℄; Russ. Phys. J.

53 (2010) 549�574; arXiv:1110.0989 [hep-ph℄; Ý×Àß 51 (2020) 1�209 [Phys. Part. Nul. 51 (2020) 1�106℄.
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5.7 A sketh of the approah.

Let us �rst onsider the basis of the QFT approah using the simplest example.

5.7.1 QFT approah by the example of the reation π⊕n → µ⊕τp.

+

pn 

−τ

µπ   +
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The rare reations π+⊕n → µ+⊕ τ−p+ . . . were (indiretly) deteted by several underground

experiments (Kamiokande, IMB, Super-Kamiokande) with atmospheri neutrinos. In 2010,

OPERA experiment (INFN, LNGS) with the CNGS neutrino beam announed the diret

observation of the �rst τ−

andidate event; six andidates were reorded in several years

of the detetor operation.

π
+

µ  +

ν
i

n

−

p

τ

π
+

µ  +

ν
i

n

−

p

τ
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+

νi

W
+

W−

pn

−τ

µπ+

→udd      uud

ud

}{i

A =∑
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+

νi

W
+

W−

pn

−τ

µπ+

→udd      uud

Vµi
*

Vτi

ud

}{i

A =∑

V    are the elements of the
Pontecorvo-Maki-Nakagawa
-Sakata (PMNS) neutrino
vacuum mixing matrix V.

 αi
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+

ν (q )i

W  (k)
+

W  (k')−

p -p *pn -p *n

−τ  -p *τ

µ  -p *
µπ  -p *

π
+

V
µi
*

V
τi

| 2 ( ) | 0E a+ñ = ñ
p

p p
ù

ù ù ù

( )3| (2 ) 2Ep dá ñ = -
k

q k k q

2 2 , , , ,E m np m= + = ¼
p

p ù

In the standard S matrix pertur-
bation theory the in & out states 
are one-particle Fock states:

ùù
ù
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+
W  (k)
+

W  (k')−

p -p *pn -p *n

−τ  -p *
τ

µ  -p *
µπ  -p *

π
+

V
µi
*

V
τi

| 2 ( ) | 0E a+ñ = ñ
p

p p
ù

ù ù ù

( )3| (2 ) 2Ep dá ñ = -
k

q k k q

2 2 , , , ,E m np m= + = ¼
p

p ù

In the standard S matrix pertur-
bation theory the in & out states 
are one-particle Fock states:

Feynman graphs
 with Fock legs
cannot reproduce
 the ν-oscillation
   phenomenon. ùù

ù
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+

ν (q )i

W  (k)
+

W  (k')−

p -p ,x *p pn -p ,x *n n

−τ  -p ,x *τ τ

µ  -p ,x *
µ µπ  -p ,x *

π π
+

V
µi
*

V
τi

In our approach the in and out
states are covariant wave packets:

( )

3

( , )
( , ) ( )

2(2 )

i k p xd e
A x a

E E

f

p

-
+ += ò

k p

k k p
p k

ù ù

PWL

( , ) ( ) , | , 2 VA x a x x m+ + Þ á ñ =p p p p֏
ù ù ⊻

| , 2 ( , ) | 0x E A x+ñ =  ñ
p

p p
ù

ù ù ù ù ù
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+

ν (q )i

W  (k)
+

W  (k')−

p -p ,x *p pn -p ,x *n n

−τ  -p ,x *τ τ

µ  -p ,x *
µ µπ  -p ,x *

π π
+

V
µi
*

V
τi

In our approach the in and out
states are covariant wave packets:

( )

3

( , )
( , ) ( )

2(2 )

i k p xd e
A x a

E E

f

p

-
+ += ò

k p

k k p
p k

ù ù

PWL

( , ) ( ) , | , 2 VA x a x x m+ + Þ á ñ =p p p p֏
ù ù ⊻

ν (q ))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))i

For simplicity we
omit the spin and 
other discrete 
variables in the
WP states

| , 2 ( , ) | 0x E A x+ñ =  ñ
p

p p
ù

ù ù ù ù ù
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+

ν (q )i

W  (k)
+

W  (k')−

p  -p ,x *p pn  -p ,x *n n

−τ   -p ,x *τ τ

µ   -p ,x *
µ µπ   -p ,x *

π π
+

V
µi
*

V
τi

Source vertex

Detector vertex

Interaction region

Interaction region

WP can be roughly thought
as small interpenetrative
cloudlets which are, however,
much larger than the micro-
scopic interaction regions in
the source/detector vertices. 

µ

π

n

p

τ
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+

ν (q )i

W  (k)
+

W  (k')−

p  -p ,x *p pn  -p ,x *n n

−τ   -p ,x *τ τ

µ   -p ,x *
µ µπ   -p ,x *

π π
+

V
µi
*

V
τi

Source vertex

Detector vertex

Interaction region

µ

τ

p

n

π

Interaction region

( )exp 1s∝ − ≪S

( )exp 1d∝ − ≪S

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q )

Unlucky configurations of the
world tubes of the WPs are
suppressed by the geometric

factors exp(-S   ) dependent 
of the in & out momenta and
space-time coordinates.

s,d
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+

ν (q )i

W  (k)
+

W  (k')−

p  -p ,x *p pn  -p ,x *n n

−τ   -p ,x *τ τ

µ   -p ,x *
µ µπ   -p ,x *

π π
+

V
µi
*

V
τi

Source vertex

Detector vertex

Interaction region

µ

τ

p

n

π

Interaction region

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q )

Lucky configurations of
the world tubes are not
suppressed, providing
possibility for interaction
of the WPs.

( )exp ~ 1s∝ −S

( )exp ~ 1d∝ −S
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+

ν (q )i

W  (k)
+

W  (k')−

p -p ,x *p pn -p ,x *n n

−τ  -p ,x *τ τ

µ  -p ,x *
µ µπ  -p ,x *

π π
+

V
µi
*

V
τi

Source vertex

Detector vertex

Interaction region
   (microscopic)

µ

τ

p

n

π

ν
i

Interaction region
   (microscopic)

Overlap
 region

Interaction region

Micro- or small
macro-scopic
(mesoscopic)

Large macroscopic distance
    (up to astronomical)

Micro-
scopic
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+

ν (q )i

W  (k)
+

W  (k')−

p  -p ,x *p pn  -p ,x *n n

−τ   -p ,x *τ τ

µ   -p ,x *
µ µπ   -p ,x *

π π
+

V
µi
*

V
τi

Source vertex

Detector vertex

Interaction region

µ

τ

p

n

π

ν
i

Interaction region

Overlap
 region

Overlap region

Impact

point Xs

Impact pointXd

)

The impact points X  and X 
are the 4-vectors defined as

s d

1

sX T T T x T x

1

d n p n n p pX T T T T x T x T x

0 1

, ,  ( )   s d s dx x p p X X֏ ֏
ù ù ù ù ù
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5.7.2 Spae-time sales.

In the ovariant WP approah there are several spae-time sales:

• T s,d
I and Rs,d

I � mirosopi interation time and radius de�ned by the Lagrangian.

• T s,d
O and Rs,d

O � mirosopi or small marosopi dimensions of the overlap spae-time regions

of the interating in and out pakets in the soure and detetor verties, de�ned by the e�etive

dimensions of the pakets.

The suppression of the �unluky� on�gurations of world tubes of the external pakets is

governed by the geometri fator in the amplitude:

exp [− (Ss + Sd)],

where Ss,d are the positive Lorentz and translation invariant funtions of {pκ} and {xκ}. In

the simplest one-parameter model of WP (relativisti Gaussian paket)

Ss,d =
∑

σ2
κ
|b⋆

κ
|2, κ ∈ S,D,

where σκ are the momentum speeds of the paket κ and b⋆
κ

is the lassial impat vetor in

the rest frame of the paket κ relative to the orresponding impat point.

• T = X0
d −X0

s and L = |Xd −Xs| � large marosopi neutrino time of �ight and way between

the impat points Xs and Xd.

For light neutrinos, the impat points lie very lose to the light one T 2 = L2

.

• In usual irumstane (terrestrial experiments) T s,d
I ≪ T s,d

O ≪ T and Rs,d
I ≪ Rs,d

O ≪ L.
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5.7.3 Examples of marosopi diagrams.

• The pp fusion.

The �rst reation of the pp I branh

1

H + 1

H→ 2

D + e+ + νe (Eν < 420 keV)

lights the Sun and an be deteted in Ga-Ge detetors like SAGE and GALLEX.

xs

νi

W

W

e

+

+

e−

p
p D

xdGa71 Ge71

2 xs

νi

W

W

e

+

+

e−

e− νj
xd

p
p D2 xs

νi

W

Z

e

+

e−e−

νi

xd

p
p D2

(a) (b) (c)

+ + +

These two diagrams interfere

The Figure illustrates the detetion of pp neutrinos with gallium (a) and eletron (b,) targets.

Unfortunately, the �nal eletron energies in the reations (b,) are too low to be deteted by

Cherenkov method.
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• The pep fusion.

The reation

1

H + 1

H + e− → 2

D + νe (Eν = 1.44 MeV)

aounts for about 0.25% of the deuterium reated in the Sun in the pp hain. It has a harateristi

time sale ∼ 1012

yr that is larger than the age of the Universe. So it is insigni�ant in the Sun as far

as energy generation is onerned. Enough pep fusions happen to produe a detetable number of

neutrinos in Ga-Ge detetors. Hene the reation must be aounted for by those interested in the

solar neutrino problem.

xs

νi

W

W

e−
+

+
e−

p
p D

xdGa71 Ge71

2 xs

νi

W

W

e−
+

+
e−

e− νj
xd

p
p D2 xs

νi

W

Z

e−
+

e−e−

νi

xd

p
p D2

(a) (b) (c)
These two diagrams interfere

The Figure illustrates the detetion of pep neutrinos with gallium (a) and eletron (b,) targets.

Similar to the pp neutrino ase, the diagram sets () and (d) interfere. While the �nal eletron in the

detetor verties of the diagrams (b,) may have a momentum above the Cherenkov threshold, the

urrent water-Cherenkov detetors SK and SNO+ are insensitive to the pep neutrinos.
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• The µe3 deay

µ− → e− + νe + νµ

in the soure an be deteted through

quasielasti sattering with prodution

of e±, µ±, or τ±; of ourse, only µ±

prodution is permitted in SM. The

diagrams (a) and (b) are for both

Dira and Majorana (anti)neutrinos,

while diagrams () and (d) are only for

Majorana neutrinos.

In the Majorana ase, the diagrams (a),

(d) and (b), () interfere. Potentially

this provides a way for distinguishing

between the Dira and Majorana

ases. Unfortunately, the diagrams ()

and (d) are suppressed by a fator

∝ mi/Eν .

n

τ
+

W
−

ν  
j

µ−

e−
W

−

ν
i

τ
−

W
+

ν 
j

µ−

e−W
−

ν
i−

−

p xd xdn p 

xs xs

p

τ
−

W
+

ν  
j

µ−

e−
W

−

ν
i

τ
+

W
−

ν 
j

µ−

e−W
−

ν
i

n xd xdp n 

xs xs

D
ir

a
c 

o
r 

M
a
jo

ra
n
a

M
a
jo

ra
n
a

(a) (b)

(c) (d)

Similar diagrams an be drawn for τe3 and τµ3 deays.
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5.8 Shortest summary.

The QFT-based neutrino osillation theory deals with generi

Feynman's marodiagrams (�myriapods�). ⊲

The external legs orrespond to asymptotially free inoming

(�in�) and outgoing (�out�) wave pakets (WP) in the oordinate

representation. Here and below: Is (Fs) is the set of in (out) WPs in

Xs (�soure�), Id (Fd) is the set of in (out) WPs inXd (�detetor�).

Xd

Xs

νi

}
}

Is

Id

Fs

Fd

}

}

© Copyright California Institute of Technology. All rights reserved.

     Commercial use or modification of this material is prohibited. The internal line denotes the ausal Green's funtion of the

neutrino mass eigen�eld νi (i = 1, 2, 3, . . .). The bloks (verties)

Xs and Xd must be marosopially separated in spae-time.

This explains the term �marosopi Feynman diagram�.

For narrow WPs, the Feynman rules in the formalism are to

be modi�ed

a

in a rather trivial way: for eah external line, the

standard (plain-wave) fator must be multiplied by

{
e−ipa(xa−x)ψa (pa, xa − x) for a ∈ Is⊕Id,

e+ipb(xb−x)ψ∗b (pb, xb − x) for b ∈ Fs⊕Fd,

(16)

where eah funtion ψκ (pκ , x) (κ = a, b) is spei�ed by the

massmκ and momentum spread σκ. The lines inside Xs and Xd

(inluding possible loops) and vertex fators remain unhanged.

a

For non-ommerial purposes.
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5.8.1 Important lass of marodiagrams.

As a pratially important example, we

onsider the harged-urrent indued

prodution of harged leptons ℓ+
α and ℓ−β

(ℓα,β = e, µ, τ) in the proess

Is⊕Id → F ′s + ℓ+
α ⊕ F ′d + ℓ−β , (17)

We assume for de�niteness that all the

external substates Is, Id, F
′
s, and F

′
d onsist

exlusively of (asymptotially free) hadroni

WPs.

Consequently, if α 6= β, the proess (17)

violates the lepton numbers Lα and Lβ that

is only possible via exhange of massive

neutrinos (no matter whether they are Dira

or Majorana partiles).

In the lowest nonvanishing order in

eletroweak interations, the proess (17) is

desribed by the sum of the diagrams shown

in the �gure. ⊲

}

}I s

ν
j

W

Fs

ℓα
+

}F's

q q’

}
} }

I d

W

Fd

ℓβ
−

F'd

q’ q

Xs

Xd

qs

(q    = p  − p    )s,d in out

hadrons hadrons

hadrons hadrons

qd

QCD

QCD

The impat points Xs and Xd in the �gure are marosopially separated and the asymptoti

onditions are assumed to be ful�lled.
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5.8.2 Main result.

A rather general (while not the most general) expression for the number of neutrino-indued events

orresponding to the diagram shown in previous page, is of the form

Nβα

τd
=
∑

spins

∫
dx

∫
dy

∫
dPs

∫
dPd

∫
d|q|Pαβ (|q|, |y− x|)

4(2π)3|y− x|2 ,

Pαβ (|q|, |y− x|) =
∑

ij

VβjVαiV
∗

βiV
∗

αj exp
(
iϕij −A2

ij − C2
ij −Θij

)
Sij ,

Sij =
exp(−B2

ij)

4Dτd

2∑

l,l′=1

(−1)l+l′+1

Ierf

[
2D
(
x0

l − y0
l′ + |y− x|

)
+iBij

]
,

D = 1/

√
2ℜ̃µν lµlν ,

dPs = (2π)4δs(q − qs)|Ms|2
∏

a∈Is

dpafa(pa, sa, x)

(2π)32Ea

∏

b∈Fs

dpb

(2π)32Eb
,

dPd = (2π)4δd(q + qd)|Md|2
∏

a∈Id

dpafa(pa, sa, y)

(2π)32Ea

∏

b∈Fd

[dpb]

(2π)32Eb
.

The ingredients are listed on p. 96. These formulas do not take into aount the inverse-square law

violation orretions, for whih we unfortunately do not have enough time to disuss.

a

a

See VN & D. S. Shkirmanov, Eur. Phys. J. C 73 (2013) 2627; Universe 7 (2021) 246 and refs. therein.
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Òàáëèöà 1: Ingredients of the equations shown in p. 95, in the leading order for the o�-

mass-shell (short distanes) and on-mass-shell (long distanes) regimes. Here L = |y − x|,

∆m2
ij = m2

i −m2
j , Q4 =

(
R00Rµν − R0µR0ν

)
lµlν , Y

µ = ℜ̃µνs qsν − ℜ̃µνd qdν , ℜ̃s,d are the

so-alled inverse overlap tensors of in and out WPs in the soure and detetor verties,

ℜ̃ = ℜ̃s + ℜ̃d, R is the tensor inverse to ℜ̃ (that is Rµλℜ̃λν = δµν ), and Σ = det(R)1/8

is the

sale of the energy-momentum dispersion of the e�etive neutrino WP. Last olumn shows the

order of magnitude (OoM) of the quantity. Evidently, Eν ≃ q0 ≃ |q| in the UR approximation.

Quantity O�-shell regime On-shell regime OoM

ϕij

∆m2
ijL

2|q|
∆m2

ijL

2Eν

|∆m2
ij |L

Eν

A2
ij

(
∆m2

ijL

2|q|2
)2 Q4

2Rµν lµlν

(
∆m2

ijL

2E2
ν

)2
1

2ℜ̃µν lµlν

(
∆m2

ij

E2
ν

ΣL

)2

Bij

∆m2
ij

4|q|

√
ℜ̃µν lµlν

2

R0µlµ
Rµν lµlν

∆m2
ij

4Eν

√
ℜ̃µν lµlν

2

Yklk
Y µlµ

|∆m2
ij |

ΣEν

C2
ij

(
∆m2

ij

2|q|

)2
1

8Rµν lµlν
0

(
∆m2

ij

ΣEν

)2

Θij

m2
i +m2

j

4|q|
[
ℜ̃0µ

s (q − qs)µ

m2
i +m2

j

4q0

[
ℜ̃µk

s lk (q0l − qs)µ

+ℜ̃0µ
d (q + qd)µ

]
+ℜ̃µk

d lk (q0l + qd)µ

] m2
i +m2

j

ΣEν
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6 Neutrino refration.

It has been noted by Wolfenstein

a

that neutrino osillations in a medium are a�eted by

interations even if the thikness of the medium is negligible in omparison with the neutrino

mean free path.

Let us forget for the moment about the inelasti ollisions and onsider the simplest ase of a

ultrarelativisti neutrino whih moves in an external (e�etive) potential W formed by the

matter bakground. If the neutrino momentum in vauum was p then its energy was

≃ p = |p|. When the neutrino enters into the medium, its energy beomes E = p+W . Let

us now introdue the index of refration n = p/E whih is a positive value in the absene of

inelasti ollisions. Therefore

W = (1 − n)E ≃ (1 − n)p. (18)

In the last step, we took into aount that neutrino interation with matter is very weak,

|W | ≪ E, and thus E ≃ p is a good approximation.

The natural generalization of Eq. (13) for the time evolution of neutrino �avor states in

matter then follows from this simple onsideration and the quantum-mehanial

orrespondene priniple.

a

L. Wolfenstein, Phys. Rev. D 17 (1978) 2369.

98



This is the famous Wolfenstein equation:

i
d

dt
|ν(t)〉

f
=
[
VH0V† + W(t)

]
|ν(t)〉

f
, (19)

where

W(t) = diag

(
1 − nνe

, 1 − nνµ
, 1 − nντ

, . . .
)
p (20)

is the interation Hamiltonian.

It will be useful for the following to introdue the time-evolution operator for the �avor states

de�ned by

|ν(t)〉
f

= S(t)|ν(0)〉
f
.

Taking into aount that |ν(t)〉
f

must satisfy Eq. (19) for any initial ondition

|ν(t = 0)〉
f

= |ν(0)〉
f

, the Wolfenstein equation an be immediately rewritten in terms of

the evolution operator:

iṠ(t) =
[
VH0V† + W(t)

]
S(t), S(0) = 1. (21)

This equation (or its equivalent (19)) annot be solved analytially in the general ase of a

medium with a varying (along the neutrino pass) density. But for a medium with a slowly

(adiabatially) varying density distribution the approximate solution an be obtained by a

diagonalization of the e�etive Hamiltonian. Below we will onsider this method for a rather

general 2-�avor ase but now let us illustrate (without derivation) the simplest situation with

a matter of onstant density.
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6.1 Matter of onstant density.

In the 2-�avor ase, the transition probability is given by the formula very similar to that for vauum:

Pαα′ (L) =
1

2
sin2 2θ

m

[
1− cos

(
2πL

L

m

)]
,

L

m

= L

v

[
1− 2κ (L

v

/L0) cos 2θ + (L

v

/L0)2
]−1/2

.

The L

m

is alled the osillation length in matter and is de�ned through the following quantities:

L

v

≡ L23 =
4πE

∆m2
, L0 =

√
2πA

GFNAZρ
≈ 2R⊕

(
A

2Z

)(
2.5 g/m

3

ρ

)
,

κ = sign

(
m2

3 −m2
2

)
, ∆m2 =

∣∣m2
3 −m2

2

∣∣ .

The parameter θ

m

is alled the mixing angle in matter and is given by

sin 2θ

m

= sin 2θ
(
L

m

L
v

)
,

cos 2θ

m

=
(

cos 2θ − κLv

L0

)(
L

m

L

v

)
.

The solution for antineutrinos is the same but with the replaement

κ 7−→ −κ.

The loseness of the value of L0 to the Earth's diameter is even more surprising than that for L

v

.

The matter e�ets are therefore important for atmospheri neutrinos.
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7 Propagation of high-energy mixed neutrinos through

matter.

�The matter doesn't matter�

Linoln Wolfenstein, leture given at 28th

SLAC Summer Institute on Partile Physis

�Neutrinos from the Lab, the Sun, and the

Cosmos�, Stanford, CA, Aug. 14-25, 2000.

When neutrinos propagate through vauum there is a phase hange exp
(
−im2

i t/2pν

)
. For two

mixed �avors there is a resulting osillation with length

L

va

=
4πEν

∆m2
≈ D⊕

(
Eν

10 GeV

)(
0.002 eV

2

∆m2

)
.

In matter there is an additional phase hange due to refration assoiated with forward sattering

exp [ipν(Ren− 1)t].

The harateristi length (for a normal medium) is

L

ref

=

√
2A

GFNAZρ
≈ D⊕

(
A

2Z

)(
2.5 g/m

2

ρ

)
.

It is generally believed that the imaginary part of the index of refration n whih desribes the

neutrino absorption due to inelasti interations does not a�et the osillation probabilities or at the

least inelasti interations an be someway deoupled from osillations.
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The onventional arguments are

• Ren− 1 ∝ GF while Imn ∝ G2
F ;

• Only ∆n may a�et the osillations and ∆Imn is all the more negligible.

It will be shown that these arguments do not work for su�iently high neutrino energies and/or for

thik media =⇒ in general absorption annot be deoupled from refration and mixing.

a

By using

another ant phrase of Wolfenstein, one an say that

�In some irumstanes the matter ould matter.�

7.1 Generalized MSW equation.

Let

fναA(0) be the amplitude for the να zero-angle sattering from partile A of the matter

bakground (A = e, p, n, . . .),

ρ(t) be the matter density (in g/m

3

),

YA(t) be the number of partiles A per amu in the point t of the medium, and

N0 = 6.02214199 × 1023

m

−3

be the referene partile number density (numerially equal to

Avogadro's number).

Then the index of refration of να for small |n− 1| (for normal media |n− 1|≪ 1) is given by

nα(t) = 1 +
2πN0ρ(t)

p2
ν

∑

A

YA(t)fναA(0),

where pν is the neutrino momentum.

apν Imn ∝ σtot (pν) grows fast with energy while pν (Ren− 1) is a onstant or dereasing funtion of Eν .
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Sine the amplitude fναA(0) is in general a omplex number, the index of refration is also omplex.

Its real part is responsible for neutrino refration while the imaginary part � for absorption. From the

optial theorem of quantum mehanis we have

Im [fναA(0)] =
pν

4π
σtotναA (pν).

This implies that

pν Im [nα(t)] =
1

2
N0ρ(t)

∑

A

YA(t)σtotναA (pν) =
1

2Λα (pν , t)
,

where

Λα (pν , t) =
1

Σtot

α (pν , t)
=
λtota (pν , t)

ρ(t)
.

is the mean free path [in m℄ of να in the point t of the medium. Sine the neutrino momentum, pν ,

is an extrinsi variable in Eq. (22), we will sometimes omit this argument to simplify formulas.

The generalized MSW equation for the time-evolution operator

S(t) =

(
Sαα(t) Sαβ(t)

Sβα(t) Sββ(t)

)

of two mixed stable neutrino �avors να and νβ propagating through an absorbing medium an be

written as

i
d

dt
S(t) =

[
VH0V

T + W(t)
]

S(t), (S(0) = 1) . (22)
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Here

V=

(
cos θ sin θ

− sin θ cos θ

)

is the vauum mixing matrix (0 ≤ θ ≤ π/2),
H0=

(
E1 0

0 E2

)

is the vauum Hamiltonian for ν mass eigenstates,

Ei=
√
p2
ν +m2

i ≃ pν +m2
i /2pν is the energy of the νi eigenstate,

W(t)= −pν
(
nα(t) − 1 0

0 nβ(t) − 1

)

is the interation Hamiltonian.

7.2 Master equation.

It is useful to transform MSW equation into the one with a traeless Hamiltonian. For this

purpose we de�ne the matrix

S̃(t) = exp

{
i

2

∫ t

0
Tr [H0 + W(t′)] dt′

}
S(t).

The master equation (ME) for this matrix then is

i
d

dt
S̃(t) = H(t)S̃(t), S̃(0) = 1. (23)
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The e�etive Hamiltonian is de�ned by

H(t) =

(
q(t) − ∆c ∆s

∆s −q(t) + ∆c

)
,

∆c = ∆ cos 2θ, ∆s = ∆ sin 2θ, ∆ =
m2

2 −m2
1

4pν
,

q(t) = qR(t) + iqI(t) =
1

2
pν [nβ(t) − nα(t)].

The Hamiltonian for antineutrinos is of the same form as H(t) but

Re [fναA(0)] = −Re [fναA(0)] and Im [fναA(0)] 6= Im [fναA(0)].

The neutrino osillation probabilities are

P [να(0) → να′(t)] ≡ Pαα′(t) = |Sα′α(t)|2 = A(t)
∣∣∣S̃α′α(t)

∣∣∣
2

, (24)

where

A(t) = exp

[
−
∫ t

0

dt′

Λ(t′)

]
,

1

Λ(t)
=

1

2

[
1

Λα(t)
+

1

Λβ(t)

]
.

Owing to the omplex potential q, the Hamiltonian H(t) is non-Hermitian and the new

evolution operator S̃(t) is nonunitary. As a result, there are no onventional relations between

Pαα′(t).
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Sine

qI(t) =
1

4

[
1

Λβ(t)
− 1

Λα(t)

]
,

the matrix H(t) beomes Hermitian when Λα = Λβ. If this is the ase at any t, the ME

redues to the standard MSW equation and inelasti sattering results in the ommon

exponential attenuation of the probabilities. From here, we shall onsider the more general

and more interesting ase, when Λα 6= Λβ.

7.3 Examples.

να − νs

This is the extreme example. Sine Λs = ∞, we have Λ = 2Λα and qI = −1/4Λα. So qI 6= 0

at any energy. Even without solving the evolution equation, one an expet the penetrability

of ative neutrinos to be essentially modi�ed in this ase beause, roughly speaking, they

spend a ertain part of life in the sterile state. In other words, sterile neutrinos �tow� their

ative ompanions through the medium as a tugboat. On the other hand, the ative neutrinos

�retard� the sterile ones, like a bulky barge retards its tugboat. As a result, the sterile

neutrinos undergo some absorption.
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νe,µ − ντ

Essentially at all energies, σCCνe,µN
> σCCντN

. This is beause of large value of the τ lepton

mass, mτ , whih leads to several onsequenes:

1. high neutrino energy threshold for τ prodution;

2. sharp shrinkage of the phase spaes for CC ντN reations;

3. kinemati orretion fators (∝ m2
τ ) to the nuleon struture funtions (the

orresponding strutures are negligible for e prodution and small for µ prodution).

The neutral urrent ontributions are aneled out from qI . Thus, in the ontext of the

master equation, ντ an be treated as (almost) sterile within the energy range for whih

σCCνe,µN
≫ σCCντN

(see Figures in pp. 109�110).

νe − να

A similar situation, while in quite a di�erent and narrow energy range, holds in the ase of

mixing of νe with some other �avor. This is a partiular ase for a normal C asymmetri

medium, beause of the W boson resonane formed in the neighborhood of

Eres

ν = m2
W /2me ≈ 6.33 PeV through the reations

νee
− → W− → hadrons and νee

− → W− → νℓℓ
− (ℓ = e, µ, τ).

Let's remind that σtotνee
≈ 250 σtotνeN

just at the resonane peak.
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7.4 Total ross setions.

Aording to Albright and Jarlskog

a

dσCCν, ν
dxdy

=
G2
FmNEν
π

(A1F1 + A2F2 ± A3F3+A4F4 +A5F5 ),

where Fi = Fi(x,Q
2) are the nuleon struture funtions and Ai are the kinemati fators

i = 1, . . . , 5). These fators were alulated by many authors

b

and the most aurate

formulas were given by Pashos and Yu:

A1 = xy2 +
m2
l y

2mNEν
, A2 = 1 − y − mN

2Eν
xy − m2

l

4E2
ν

, A3 = xy
(

1 − y

2

)
− m2

l y

4mNEν
,

A4 =
m2
l

2mNEν

(
xy +

m2
l

2mNEν

)
, A5 = − m2

l

2mNEν
.

The ontributions proportional to m2
ℓ must vanish as Eν ≫ mℓ. However they remain

surprisingly important even at very high energies.

a

C. H. Albright and C. Jarlskog, Nul. Phys. B 84 (1975) 467�492; see also I. Ju, Phys. Rev. D 8 (1973)

3103�3109 and V. D. Barger et al., Phys. Rev. D 16 (1977) 2141�2157.

b

See previous footnote and also the more reent papers: S. Dutta, R. Gandhi, and B. Mukhopadhyaya, Eur.

Phys. J. C 18 (2000) 405�416, hep-ph/9905475; N. I. Starkov, J. Phys. G 27 (2001) L81�L85; E. A. Pashos

and J. Y. Yu, Phys. Rev. D 65 (2002) 033002, hep-ph/0107261.
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7.5 Indies of refration.

For Eν ≪ min

(
m2
W,Z/2mA

)

and for an eletroneutral nonpolarized old medium, the qR is

energy independent. In the leading orders of the standard eletroweak theory it is

qR =





1
2V0Ypρ for α = e and β = µ or τ ,

− 1
2aτV0 (Yp + bτYn) ρ for α = µ and β = τ ,

1
2V0

(
Yp − 1

2Yn
)
ρ for α = e and β = s,

1
4V0Ynρ for α = µ or τ and β = s,

where

V0 =
√

2GFN0 ≃ 7.63 × 10−14

eV

(
L0 =

2π

V0
≃ 1.62 × 104

km ∼ D⊕

)
,

aτ =
3αrτ [ln(1/rτ ) − 1]

4π sin2 θW
≃ 2.44 × 10−5,

bτ =
ln(1/rτ ) − 2/3

ln(1/rτ ) − 1
≃ 1.05,

α is the �ne-struture onstant, θW is the weak-mixing angle and rτ = (mτ/mW )2

.
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Notes:

• For an isosalar medium the |qR| is of the same order of magnitude for any pair of �avors but

νµ − ντ .

• For an isosalar medium q
(νµ−ντ )
R /q

(νe−νµ)
R ≈ −5× 10−5

.

• For ertain regions of a neutron-rih medium the value of q
(νe−νs)
R may beome vanishingly

small. In this ase, the one-loop radiative orretions must be taken into aount.

• For very high energies the qR have to be orreted for the gauge boson propagators and

strong-interation e�ets.

One an expet |qR| to be either an energy-independent or dereasing funtion for any pair of mixed

neutrino �avors. On the other hand, there are several ases of muh urrent interest when |qI | either

inreases with energy without bound (mixing between ative and sterile neutrino states) or has a

broad or sharp maximum (as for νµ − ντ or νe − νµ mixings, respetively).

Numerial estimations suggest that for every of these ases there is an energy range in whih qR and

qI are omparable in magnitude. Sine qR ∝ ρ and qI ∝ and are dependent upon the omposition of

the medium (YA) there may exist some more spei� situations, when

|qR| ∼ |qI | ∼ |∆|

or even

|qR| ∼ |∆c| and |qI | ∼ |∆s| .

If this is the ase, the refration, absorption and mixing beome interestingly superimposed.
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7.6 Eigenproblem and mixing matrix in matter.

7.6.1 Eigenvalues.

The matrix H(t) has two omplex instantaneous eigenvalues, ε(t) and −ε(t), with
ε = εR + iεI satisfying the harateristi equation

ε2 = (q − q+) (q − q−) ,

where

q± = ∆c ± i∆s = ∆e±2iθ.

The solution is

ε2
R =

1

2

(
ε2

0 − q2
I

)
+

1

2

√
(ε2

0 − q2
I )

2
+ 4q2

I (ε2
0 − ∆2

s),

εI =
qI (qR − ∆c)

εR
(provided qR 6= ∆c) ,

with

ε0 =
√

∆2 − 2∆cqR + q2
R ≥ |∆s|, sign (εR)

def

= sign(∆) ≡ ζ.

(At that hoie ε = ∆ for vauum and ε = ζε0 if qI = 0.)
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In the viinity of the MSW resonane, qR = qR(t⋆) = ∆c

lim
qR→∆c±0

εR= ∆s

√
max (1 − ∆2

I/∆
2
s, 0),

lim
qR→∆c±0

εI= ±ζ∆I

√
max (1 − ∆2

s/∆
2
I , 0),

where ∆I = qI(t⋆). Therefore the resonane value of |εR| (whih is inversely proportional to

the neutrino osillation length in matter) is always smaller than the onventional MSW value

|∆s| and vanishes if ∆2
I < ∆2

s (εI remains �nite in this ase). In neutrino transition through

the region of resonane density ρ = ρ(t⋆), εI undergoes disontinuous jump while εR remains

ontinuous. The orresponding uts in the q plane are plaed outside the irle |q| ≤ |∆|. If

∆2
I > ∆2

s, the imaginary part of ε vanishes while the real part remains �nite.

A distintive feature of the harateristi equation is the existene of two mutually onjugate

�super-resonane� points q± in whih ε vanishes giving rise to the total degeneray of the

levels of the system (impossible in the �standard MSW� solution). Certainly, the behavior of

the system in the viinity of these points must be dramatially di�erent from the onventional

pattern.

The �super-resonane� onditions are physially realizable for various meaningful

mixing senarios.
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Some useful relations:

ε2
R =

2q2
I

(
ε2

0 − ∆2
s

)
√

(ε2
0 − q2

I )
2

+ 4q2
I (ε2

0 − ∆2
s) − ε2

0 + q2
I

,

εI =

√
(ε2

0 − q2
I )

2
+ 4q2

I (ε2
0 − ∆2

s) − ε2
0 + q2

I

2qI (qR − ∆c)
,

∂εR
∂qR

=
∂εI
∂qI

=
qIεI + (qR − ∆c) εR

ε2
R + ε2

I

,

∂εI
∂qR

= −∂εR
∂qI

=
qIεR − (qR − ∆c) εI

ε2
R + ε2

I

,

Re

[
q(t) − ∆c

ε

]
=

(
qR − ∆c

εR

)(
ε2
R + q2

I

ε2
R + ε2

I

)
,

Im

[
q(t) − ∆c

ε

]
=

(
qI
εR

)(
ε2
R − ε2

0 + ∆2
s

ε2
R + ε2

I

)
,

(qR − ∆c)
2

= ε2
0 − ∆2

s.

qR

qI

− |∆  |s

   |∆  |s

∆c

2θ

|∆|
0

Zeros and uts of ε in the q plane for ∆c >

0. The uts are plaed outside the irle

|q| ≤ |∆| parallel to axis qR = 0. The MSW

resonane point is (∆c, 0) and the two �super-

resonane� points are (∆c,±∆s).
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7.6.2 Eigenstates.

In order to simplify the solution to the eigenstate problem we'll assume that the phase

trajetory q = q(t) does not ross the points q± at any t. In non-Hermitian quantum

dynamis one has to onsider the two pairs of instantaneous eigenvetors |Ψ±〉 and |Ψ±〉

whih obey the relations

H|Ψ±〉 = ± ε|Ψ±〉 and H†|Ψ±〉 = ± ε∗|Ψ±〉. (25)

and (for q 6= q±) form a omplete biorthogonal and biorthonormal set,

〈Ψ±|Ψ±〉 = 1, 〈Ψ±|Ψ∓〉 = 0, |Ψ+〉〈Ψ+| + |Ψ−〉〈Ψ−| = 1.

Therefore, the eigenvetors are de�ned up to a gauge transformation

|Ψ±〉 7→ eif± |Ψ±〉, |Ψ±〉 7→ e−if∗
± |Ψ±〉,

with arbitrary omplex funtions f±(t) suh that Im (f±) vanish as q = 0.a Thus it is

su�ient to �nd any partiular solution of Eqs. (25). Taking into aount that H† = H∗

, we

may set |Ψ±〉 = |Ψ∗
±〉 and hene the eigenvetors an be found from the identity

H = ε|Ψ+〉〈Ψ∗
+| − ε|Ψ−〉〈Ψ∗

−|.

a

For our aims, the lass of the gauge funtions may be restrited without loss of generality by the ondition

f±|q=0 = 0.
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Setting |Ψ±〉 = (v±,±v∓)
T

we arrive at the equations

v2
± =

ε± (q − ∆c)

2ε
, v+v− =

∆s

2ε
,

a partiular solution of whih an be written as

v+=

√∣∣∣∣
ε+ q − ∆c

2ε

∣∣∣∣ e
i(ϕ−ψ)/2,

v−= ζ

√∣∣∣∣
ε− q + ∆c

2ε

∣∣∣∣ e
i(−ϕ−ψ)/2.

where

ϕ = arg(ε+ q − ∆c) = − arg(ε− q + ∆c) = arctan

(
qI
εR

)
,

ψ = arg(ε) = arctan

(
εI
εR

)
.

We have �xed the remaining gauge ambiguity by a omparison with the vauum ase.
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7.6.3 Mixing angle in matter.

It may be sometimes useful to de�ne the omplex mixing angle in matter Θ = ΘR + iΘI by the

relations

sinΘ = v+ and cosΘ = v−

or, equivalently,

sin 2Θ =
∆s

ε
, cos 2Θ =

∆c − q
ε

,

The real and imaginary parts of Θ are found to be

Re(Θ)≡ ΘR =
1

2
arctan

[
(qI −∆s) εR − (qR −∆c) εI

(qR −∆c) εR + (qI −∆s) εI

]
,

Im(Θ)≡ ΘI =
1

4
ln

[
ε2

R + ε2
I

(qR −∆c)2 + (qI −∆s)2

]
.

cosΘ= cosΘR coshΘI − i sinΘR sinhΘI ,

sinΘ= sinΘR coshΘI + i cosΘR sinhΘI .

Having regard to the presription for the sign of εR, one an verify that Θ = θ if q = 0 (vauum

ase) and Θ = 0 if ∆s = 0 (no mixing or m2
1 = m2

2). It is also lear that Θ beomes the standard

MSW mixing angle with Im(Θ) = 0 when qI = 0 (Λα = Λβ).
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7.6.4 Mixing matrix in matter.

In order to build up the solution to ME for the

nondegenerated ase one has to diagonalize the

Hamiltonian. Generally a non-Hermitian matrix

annot be diagonalized by a single unitary

transformation. But in our simple ase this

an be done by a omplex orthogonal matrix

(extended mixing matrix in matter)

Uf = U exp(if),

where f = diag (f−, f+) and

U = (|Ψ−〉, |Ψ+〉) =

(
v− v+

−v+ v−

)

=

(
cosΘ sinΘ

− sinΘ cosΘ

)
.

Properties of U:

U
T

HU = diag (−ε, ε),
U

T
U = 1, U|q=0 = V.

From CE it follows that

∂ε

∂q
=

(q −∆c)

ε

and thus

∂v±
∂q

= ±∆2
sv∓

2ε2
.

We therefore have

iUT
U̇ = −Ω

(
0 −i
i 0

)
= −Ωσ

2
,

Ω =
q̇∆s

2ε2
=
i

4

d

dt
ln

(
q − q+

q − q−

)
.

Properties of Uf :

U
T
f HUf = diag (−ε, ε),

U
T
f Uf = 1, Uf |q=0 = V,

iUT
f U̇f = −Ωe−if σ

2
eif − ḟ .
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7.7 Adiabati solution.

Formal solution to ME in the most general form:

S̃(t) = Uf (t) exp [−iΦ(t)] Xf (t)UT
f (0). (26)

Here Φ(t) = diag (−Φ(t), Φ(t)) and Φ(t) = ΦR(t) + iΦI(t) is the omplex dynamial phase,

de�ned by

ΦR(t) =

∫ t

0

εR(t′)dt′, ΦI(t) =

∫ t

0

εI(t
′)dt′,

and Xf (t) must satisfy the equation

iẊf (t) =
[
Ω(t)e−if(t)F(t)eif(t) + ḟ(t)

]
Xf (t), Xf (0) = 1,

where

F(t) = eiΦ(t)σ2e
−iΦ(t) =

(
0 −ie−2iΦ(t)

ie2iΦ(t) 0

)
.

It an be proved now that the right side of Eq. (26) is gauge-invariant i.e. it does not depend

on the unphysial omplex phases f±(t). This ruial fat is losely related to the absene of

the Abelian topologial phases in the system under onsideration.
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Finally, we an put f± = 0 in Eq. (26) and the result is

S̃(t) = U(t) exp [−iΦ(t)] X(t)UT (0), (27a)

iẊ(t) = Ω(t)F(t)X(t), X(0) = 1. (27b)

These equations, being equivalent to the ME, have nevertheless a restrited range of pratial

usage on aount of poles and uts as well as deaying and inreasing exponents in the

�Hamiltonian� ΩF.

7.7.1 Adiabati theorem.

The adiabati theorem of Hermitian quantum mehanis an almost straightforwardly be extended to

ME under the requirements:

(a) the potential q is a su�iently smooth and slow funtion of t;

(b) the imaginary part of the dynamial phase is a bounded funtion i.e. limt→∞ |ΦI(t)| is �nite;

() the phase trajetory q = q(t) is plaed far from the singularities for any t.

The �rst requirement breaks down for a ondensed medium with a sharp boundary or layered

struture (like the Earth). If however the requirement (a) is valid inside eah layer (ti, ti+1), the

problem redues to Eqs. (27) by applying the rule

S̃(t) ≡ S̃(t, 0) = S̃ (t, tn) . . . S̃ (t2, t1) S̃ (t1, 0),

where S̃ (ti+1, ti) is the time-evolution operator for the i-th layer.
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The requirement (b) alone is not too restritive onsidering that for many astrophysial objets (like

stars, galati nulei, jets and so on) the density ρ exponentially disappears to the periphery and, on

the other hand, εI → 0 as ρ→ 0. In this instane, the funtion ΦI(t) must be t independent for

su�iently large t. But, in the ase of a steep density pro�le, the requirements (a) and (b) may be

inonsistent. The important ase of violation of the requirement () is the subjet of a speial study

whih is beyond the sope of this study.

It is interesting to note in this onnetion that, in the Hermitian ase, a general adiabati theorem has been

proved without the traditional gap ondition

a

.

a

J. E. Avron and A. Elgart, Commun. Math. Phys. 203 (1999) 445�467.
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7.7.2 The solution.

Presume that all neessary onditions do hold for 0 ≤ t ≤ T . Then, in the adiabati limit, we an put

Ω = 0 in Eq. (27b). Therefore X = 1 and Eq. (27a) yields

S̃αα(t)= v+(0)v+(t)e−iΦ(t) + v−(0)v−(t)eiΦ(t),

S̃αβ(t)= v−(0)v+(t)e−iΦ(t) − v+(0)v−(t)eiΦ(t),

S̃βα(t)= v+(0)v−(t)e−iΦ(t) − v−(0)v+(t)eiΦ(t),

S̃ββ(t)= v−(0)v−(t)e−iΦ(t) + v+(0)v+(t)eiΦ(t),

Taking into aount Eq. (24) we obtain the survival and transition probabilities:

Pαα(t) = A(t)
{[
I+

+ (t)eΦI(t) + I−− (t)e−ΦI(t)
]2 − I2(t) sin2 [ΦR(t)− ϕ+(t)]

}
,

Pαβ(t) = A(t)
{[
I−+ (t)eΦI(t) − I+

−(t)e−ΦI(t)
]2

+ I2(t) sin2 [ΦR(t)− ϕ−(t)]
}
,

Pβα(t) = A(t)
{[
I+
−(t)eΦI(t) − I−+ (t)e−ΦI(t)

]2
+ I2(t) sin2 [ΦR(t) + ϕ−(t)]

}
,

Pββ(t) = A(t)
{[
I−− (t)eΦI (t) + I+

+ (t)e−ΦI(t)
]2 − I2(t) sin2 [ΦR(t) + ϕ+(t)]

}
,

(28)

where we have denoted for ompatness (ς, ς ′ = ±)

Iς′

ς (t) = |vς(0)vς′ (t)|, ϕ±(t) =
ϕ(0) ± ϕ(t)

2
, I2(t) = 4I+

+ (t)I−− (t) = 4I−+ (t)I+
−(t) =

∆2
s

|ε(0)ε(t)|
.
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7.7.3 Limiting ases.

In the event that the onditions

∣∣∣∣
1

Λβ(t)
− 1

Λα(t)

∣∣∣∣ ≪ 4ε0(t) and t ≪ min [Λα(t), Λβ(t)]

are satis�ed for any t ∈ [0, T ], the formulas (28) redue to the standard MSW adiabati

solution

Pαα(t)= Pββ(t) =
1

2
[1 + J(t)] − I2

0 (t) sin2 [Φ0(t)],

Pαβ(t)= Pβα(t) =
1

2
[1 − J(t)] + I2

0 (t) sin2 [Φ0(t)],





(MSW)

where

J(t) =
∆2 − ∆c [qR(0) + qR(t)] + qR(0)qR(t)

ε0(0)ε0(t)
,

I2
0 (t) =

∆2
s

ε0(0)ε0(t)
, Φ0(t) =

∫ t

0

ε0(t′)dt′.

Needless to say either of the above onditions or both may be violated for su�iently high

neutrino energies and/or for thik media, resulting in radial di�erenes between the two

solutions. These di�erenes are of obvious interest to high-energy neutrino astrophysis.
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It is perhaps even more instrutive to examine the distintions between the general adiabati

solution (28) and its �lassial limit�

Pαα(t)= exp

[
−
∫ t

0

dt′

Λα(t′)

]
, Pαβ(t) = 0,

Pββ(t)= exp

[
−
∫ t

0

dt′

Λβ(t′)

]
, Pβα(t) = 0,





(∆s = 0)

whih takes plae either in the absene of mixing or for m2
1 = m2

2.

Note:

Considering that Ω ∝ ∆s, the lassial limit is the exat solution to the master equation (for

∆s = 0). Therefore it an be derived diretly from Eq. (23). To make ertain that the

adiabati solution has orret lassial limit, the following relations are useful:

lim
∆s→0

ε(t) = ζζR [q(t) − ∆c]

and

lim
∆s→0

|v±( t)|2 =
1

2
(ζζR ± 1),

where

ζR = sign [qR(t) − ∆c].
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7.8 Matter of onstant density and omposition.

In this simple ase, the adiabati approximation beomes exat and thus free from the

above-mentioned oneptual di�ulties. For de�niteness sake we assume Λα < Λβ (and thus

qI < 0) from here. The opposite ase an be onsidered in a similar way. Let's denote

1

Λ±

=
1

2

(
1

Λα
+

1

Λβ

)
± ξ

2

(
1

Λα
− 1

Λβ

)
,

I2
± =

1

4

(
1 +

ε2
0 + q2

I − ∆2
s

ε2
R + ε2

I

)
± ξ

2

(
ε2
R + q2

I

ε2
R + ε2

I

)
,

L =
π

|εR| and ξ =

∣∣∣∣
qR − ∆c

εR

∣∣∣∣.

As is easy to see,

I±
± =




I± if sign (qR − ∆c) = +ζ,

I∓ if sign (qR − ∆c) = −ζ,

I−
+ = I+

− =
√
I+I− =

I

2
=

∣∣∣∣
∆s

2ε

∣∣∣∣

and sign(ϕ) = −ζ.
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By applying the above identities, the neutrino osillation probabilities an be written as

Pαα(t)=
(
I+e

−t/2Λ+ + I−e
−t/2Λ−

)2

− I2e−t/Λ sin2

(
πt

L
+ |ϕ|

)
,

Pββ(t)=
(
I−e

−t/2Λ+ + I+e
−t/2Λ−

)2

− I2e−t/Λ sin2

(
πt

L
− |ϕ|

)
,

Pαβ(t)= Pβα(t) =
1

4
I2
(
e−t/2Λ− − e−t/2Λ+

)2

+ I2e−t/Λ sin2

(
πt

L

)
.

The di�erene between the survival probabilities for να and νβ is

Pαα(t) − Pββ(t) = −ζRe

(
q − ∆c

ε

)(
e−t/2Λ− − e−t/2Λ+

)

+I2e−t/Λ sinϕ sin

(
2πt

L

)
.
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7.8.1 Case |q| & |∆s|.

Let's examine the ase when Λ+ and Λ− are vastly di�erent in magnitude. This will be true

when Λβ ≫ Λα and the fator ξ is not too small. The seond ondition holds if qR is away

from the MSW resonane value ∆c and the following dimensionless parameter

κ =
∆s

|q| ≈ 0.033 × sin 2θ

(
∆m2

10−3

eV

2

)(
100 GeV

Eν

)(
V0

|q|

)

is su�iently small. In fat we assume |κ| . 1 and impose no spei� restrition for the ratio

qR/qI . This spans several possibilities:

⋆ small ∆m2

,

⋆ small mixing angle,

⋆ high energy,

⋆ high matter density.

The last two possibilities are of speial interest beause the inequality |κ| . 1 may be ful�lled

for a wide range of the mixing parameters ∆m2

and θ by hanging Eν and/or ρ. In other

words, this ondition is by no means arti�ial or too restritive.
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After elementary while a bit tedious alulations we obtain

ξ = 1 − 1

2
κ

2 + O
(
κ

3
)
, I2 = κ

2 + O
(
κ

3
)
,

I+ = 1 + O
(
κ

2
)
, I− =

1

4
κ

2 + O
(
κ

3
)
;

Λ ≈ 2Λα, Λ+ ≈
(

1 +
κ

2

4

)
Λα ≈ Λα, Λ− ≈

(
4

κ2

)
Λα ≫ Λα.

Due to the wide spread among the length/time sales Λ±, Λ and L as well as among the

amplitudes I± and I, the regimes of neutrino osillations are quite diverse for di�erent ranges

of variable t.

With referene to Figures in pp. 130�133, one an see a regular gradation from slow (for

t . Λµ) to very fast (for t & Λµ) neutrino osillations followed by the asymptoti

nonosillatory behavior:

Pµµ(t) ≃ κ
4

16
e−t/Λ− ,

Pss(t) ≃ e−t/Λ− ,

Pµs(t) = Psµ(t) ≃ κ
2

4
e−t/Λ− .
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Survival and transition probabilities for νµ ↔ νs osillations (Eν = 250 GeV, ρ = 1 g/m

3

).
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Survival and transition probabilities for νµ ↔ νs osillations (Eν = 1000 GeV, ρ = 0.2 g/m

3

).

131



Survival and transition probabilities for νµ ↔ νs osillations (Eν = 100 TeV, ρ = 10−3

g/m

3

).
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Survival and transition probabilities for νµ ↔ νs osillations (Eν = 100 TeV, ρ = 3× 10−4

g/m

3

).
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The mehanism under disussion may be released in the Thorne�




Zytkow objets (T




ZO) � binaries

with a neutron star submerged into a red supergiant ore. Figure shows an artisti view of how a

T




ZO ould be formed.

[See, e.g., URLs: 〈 http://astro�shki.net/universe/hv-2112-neveroyatnyj-obekt-torna-zhitkov/ 〉 and

〈 http://www.deifrandoastronomia.om.br/2017/01/uma-estrela-dentro-de-outra-onhea-hv.html〉.℄

The very bright red star HV2112 in the Small Magellani Cloud (see next slide) ould be a massive

supergiant-like star with a degenerate neutron ore (T




ZO). With its luminosity of over 105L⊙, it

ould also be a super asymptoti giant branh star (SAGB), a star with an oxygen/neon ore

supported by eletron degeneray and undergoing thermal pulses with third dredge up.
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Both T




ZO and SAGB stars are expeted to be rare. Calulations performed by Ch. A. Tout et al.

a

indiate that HV2112 is likely a genuine T




ZO. But a muh more likely explanation is that HV2112 is

an intermediate mass (∼ 5M⊙) AGB star; a new T




ZO andidate (HV11417) is reently suggested.

b

a

Ch. A. Tout, A. N.




Zytkow, R. P. Churh, & H. H. B. Lau, �HV2112, a Thorne�




Zytkow objet or a super

asymptoti giant branh star�, Mon. Not. Roy. Astron. So. 445 (2014) L36�L40, arXiv:1406.6064 [astro-ph.HE℄.

b

E. R. Beasor, B. Davies, I. Cabrera-Ziri, & G. Hurst , �A ritial re-evaluation of the Thorne�




Zytkow objet

andidate HV 2112�, arXiv:1806.07399 [astro-ph.SR℄.
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7.8.2 Degenerate ase.

The onsideration must be ompleted for the ase of degeneray. Due to the ondition

qI < 0, the density and omposition of the �degenerate environment� are �ne-tuned in suh a

way that

q = q−ζ = ∆c − i |∆s|.

The simplest way is in oming bak to the master equation. Indeed, in the limit of q = q−ζ ,

the Hamiltonian redues to

H = |∆s|
(

−i ζ

ζ i

)
≡ |∆s| hζ .

Considering that h2
ζ = 0, we promptly arrive at the solution of ME:

S̃(t) = 1 − it |∆s| hζ

and thus

Pαα(t) = (1 − |∆s| t)2
e−t/Λ,

Pββ(t) = (1 + |∆s| t)2
e−t/Λ,

Pαβ(t) = Pβα(t) = (∆st)
2
e−t/Λ.
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Sine 1/Λβ = 1/Λα − 4 |∆s|, the neessary ondition for the total degeneration is

4Λα |∆s| ≤ 1

and thus

1/Λ = 1/Λα − 2 |∆s| ≥ 2 |∆s|.

The equality only ours when νβ is sterile.

The degenerate solution must be ompared with the standard MSW solution

Pαα(t) = Pss(t) =
1

2
[1 + cos (2∆st)],

Pαs(t) = Psα(t) =
1

2
[1 − cos (2∆st)],





(MSW)

and with the lassial penetration oe�ient

exp (−t/Λα)

(with 1/Λα numerially equal to 4 |∆s|) relevant to the transport of unmixed ative neutrinos

through the same environment.
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No room for MSW

Survival and transition probabilities for να ↔ νs osillations in the ase of degeneray (q = q−ζ). The

standard MSW probabilities (dotted and dash-dotted urves) together with the penetration

oe�ient for unmixed να (dashed urve) are also shown.
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7.9 Conlusions.

We have onsidered, on the basis of the MSW evolution equation with omplex indies of

refration, the onjoint e�ets of neutrino mixing, refration and absorption on high-energy

neutrino propagation through matter. The adiabati solution with orret asymptotis in the

standard MSW and lassial limits has been derived. In the general ase the adiabati

behavior is very di�erent from the onventional limiting ases.

A noteworthy example is given by the ative-to-sterile neutrino mixing. It has been

demonstrated that, under proper onditions, the survival probability of ative neutrinos

propagating through a very thik medium of onstant density may beome many orders of

magnitude larger than it would be in the absene of mixing. The quantitative harateristis

of this phenomenon are highly responsive to hanges in density and omposition of the

medium as well as to neutrino energy and mixing parameters.

Considering a great variety of latent astrophysial soures of high-energy neutrinos, the e�et

may open a new window for observational neutrino astrophysis.
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The standard (ββ)2ν is observed for a dozen isotopes with T 2ν
1/2

∼ 1019−25

years. Some most reent

averaged/reommended T 2ν
1/2

are olleted in Table and are ompared with theoretial preditions.

T 2ν
1/2 (years)

Element Isotope Measured Calulated

Calium

48
20Ca 5.3+1.2

−0.8 × 1019 6× 1018 − 5× 1020

Germanium

76
32Ge (1.88± 0.08)× 1021 7× 1019 − 6× 1022

Selenium

82
34Se 8.7+0.2

−0.1 × 1019 3× 1018 − 6× 1021

Zironium

96
40Zr (2.3± 0.2)× 1019 3× 1017 − 6× 1020

Molybdenum

100
42Mo 7.06+0.15

−0.12 × 1018 1× 1017 − 2× 1022

Molybdenum�Ruthenium

100
42Mo−100

44Ru(0+
1 ) 6.7+0.5

−0.4 × 1020 5× 1019 − 2× 1021

Cadmium

116
48Cd (2.69± 0.09)× 1019 3× 1018 − 2× 1021

Tellurium

128
52Te (2.25± 0.09)× 1024 9× 1022 − 3× 1025

Tellurium

130
52Te (7.91± 0.21)× 1020 2× 1019 − 7× 1020

Xenon

136
54Xe (2.18± 0.05)× 1021 −

Neodymium

150
60Nd (9.34± 0.65)× 1018 6× 1016 − 4× 1020

Neodymium�Samarium

150
60Ne−150

62Sm(0+
1 ) 1.2+0.3

−0.2 × 1020 −

Uranium

238
92U (2.0± 0.6)× 1021 2× 1019 − 2× 1023

[From A. S. Barabash, �Preise half-life values for two-neutrino double-β deay: 2020 review,� Universe 6 (2020) 159,

arXiv:2009.14451 [nul-ex℄ (experiment); E. Fiorini, �Experimental prospets of neutrinoless double beta deay,� Phys.

Sripta T121 (2005) 86�93 (theory; of ourse these alulations are outdated, but I did not �nd a fresh review).℄
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Best urrent results on 0νββ deay. The T 0ν
1/2 and 〈mββ〉(≡ 〈|mββ |〉) limits are at 90% C.L.

Element Isotope Q2β (keV) T 0ν
1/2 (years) 〈mββ〉 (eV) Experiment

Calium

48

Ca 4267.98 > 5.8× 1022 < 3.5− 22 ELEGANT-IV

Germanium

76

Ge 2039.00 > 8.0× 1025 < 0.12− 0.26 GERDA

> 1.9× 1025 < 0.24− 0.52 Majorana

Demonstrator

Selenium

82

Se 2997.9 > 3.6× 1023 < 0.89− 2.4 NEMO-3

Zironium

96

Zr 3355.85 > 9.2× 1021 < 7.2− 19.5 NEMO-3

Molybdenum

100

Mo 3034.40 > 1.1× 1024 < 0.33− 0.62 NEMO-3

Cadmium

116

Cd 2813.50 > 2.2× 1023 < 1.0− 1.7 AURORA

Tellurium

128

Te 866.6 > 1.1× 1024 − Geohemial

Tellurium

130

Te 2527.52 > 1.5× 1025 < 0.11− 0.52 CUORE

Xenon

136

Xe 2457.83 > 1.07× 1026 < 0.061− 0.165 KamLAND-Zen

> 1.8× 1025 < 0.15− 0.40 EXO-200

Neodymium

150

Nd 3371.38 > 2.0× 1022 < 1.6− 5.3 NEMO-3

The 〈mββ〉 limits are listed as reported in the original publiations.

a

[M. J. Dolinski, A. W. P. Poon, & W. Rodejohann, �Neutrinoless double-beta deay: Status and prospets,� Ann. Rev.

Nul. Part. Si. 69 (2019) 219�251, arXiv:1902.04097 [nul-ex℄.℄

a

For a bit another approah, see A. S. Barabash, �Brief review of double beta deay experiments�,

arXiv:1702.06340 [nul-ex℄; the Q values shown in the Table are borrowed from that paper.
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0.001 0.01 0.1 1
lightest neutrino mass, m (eV)

0.0001

|m
  
|

β
β

(e
V

)

m   < 031
2

31
2

0.001

0.01

0.1

1
 hierarchical       cancellation        quasi−degenerate

                           (only NH)

∆m2 s2
12c

2
13

∆m2
A c2

13 cos 2θ12

m1c
2
12c

2
13

∆m2
A c2

13

m0

− ∆m2 + m2
1 s2

12c
2
13

m 0
1−t  −2

12 2s2
13

1+t212

− ∆m2
A + m2

1 s2
13± ∆m2

A s2
13

m   > 0

NH:

m1 = m,

m2
2 = m2 + ∆m2

⊙,

m2
3 = m2 + ∆m2

A

,
IH:

m2
1 = m2 + ∆m2

A

,

m2
2 = m2 + ∆m2

A

+ ∆m2
⊙,

m3 = m.

The main properties of |mββ | vs. smallest neutrino mass (m). The value of sin2 2θ13 = 0.02 has been

hosen, m0 is the ommon mass sale (measurable in KATRIN or by osmology via

∑
i
mi/3) for

quasi-degenerate masses m1 ≃ m2 ≃ m3 ≡ m0 ≫
√

∆m2

A

(orretions are small as m & 0.03 eV).

[Taken from M. Lindner, A. Merle, and W. Rodejohann,�Improved limit on θ13 and impliations for neutrino masses in

neutrinoless double beta deay and osmology,� Phys. Rev. D 73 (2006) 053005, hep-ph/0512143.℄
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Shehter-Valle (blak-box) theorem.

Current partile models (GUTs, R-parity violating SUSY, et.) provide mehanisms, other than

neutrino mass, whih an ontribute to or even dominate the 0νββ proess (see example below).

a

R-parity violating ontribution to 0νββ deay mediated by sfermions and neutralinos (gluinos).

[Figure is borrowed from J. D. Vergados, H. Ejiri, and F. Simkovi, �Theory of neutrinoless double-beta deay,� Rep.

Prog. Phys. 75 (2012) 106301, arXiv:1205.0649 [hep-ph℄, where many other examples an be found.℄
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Shehter and Valle proved

a

that

for any realisti gauge theory inluding the usual (SM)

W -gauge-�eld interation with left-handed e and νe and

with u and d quarks, if 0νββ-deay takes plae, regardless

of the mehanism ausing it, the neutrino is Majorana

partile with nonzero mass.

The reason is that one an onsider the 0νββ elementary

interation proess dd→ uuee as generated by the blak

box, whih an inlude any mehanism. Then the legs of

the blak box an be arranged to form a diagram whih

generates νe → νe transitions. This diagram ontributes

to the Majorana mass of the eletron neutrino through

radiative orretions at some order of perturbation theory,

even if there is no tree-level Majorana neutrino mass term.

It is however lear that the blak-box amplitudes are

strongly suppressed (at least by a fator ∝ G2
F ) with

respet to the standard tree-level 0νββ-deay amplitude.

Model alulations show that the standard amplitude

orresponding to a value of |mββ | = O(0.1) eV generates

radiatively a Majorana mass O(10−24) eV.

νe

νe

W

W

νe

νe

W

W

Generic

Example (R SUSY)

a

J. Shehter and J. W. F. Valle, �Neutrinoless double-β deay in SU(2)×U(1) theories,� Phys. Rev. D 25

(1982) 2951�2954. A generalization to 3ν (mixed) ase was made by M. Hirsh, H. V. Klapdor-Kleingrothaus,

and S. G. Kovalenko, �On the SUSY aompanied neutrino exhange mehanism of neutrinoless double beta

deay,� Phys. Lett. B 372 (1996) 181�186, Phys. Lett. B 381 (1996) 488 (erratum), hep-ph/9512237.
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7.10 Double see-saw & inverse see-saw.

The see-saw an be implemented by introduing additional neutrino singlets beyond the three

RH neutrinos involved into the see-saw type I. One have to distinguish between

• RH neutrinos νR, whih arry B − L and perhaps (not neessary) form SU(2)R doublets

with RH harged leptons, and

• Neutrino singlets νS , whih have no Yukawa ouplings to the LH neutrinos but may

ouple to νR.

If the singlets have nonzero Majorana masses MSS while the RH neutrinos have a zero

Majorana mass, MRR = 0, the see-saw mehanism may proeed via mass ouplings of the

singlets to RH neutrinos, MRS. In the basis (νL,νR,νS), the 9 × 9 mass matrix is




0 mLR 0

mLR 0 MRS

0 MT
RS MSS


.

Assuming that the eigenvalues of MSS are muh smaller than the eigenvalues of MRS , the

light physial LH Majorana neutrino masses are then doubly suppressed,

M1 ≃ mLRM−1
RSMSS

(
MT

RS

)−1
mT
LR, M2

2 ≃ M2
RS + m2

LR.

This senario is usually used in string inspired models [see, e.g., R.N.Mohapatra & J.W.Valle, Phys. Rev.

D 34 (1986) 1642; M.C.Gonzalez-Garia & J.W.F.Valle, Phys. Lett. B 216 (1989) 360℄.
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7.11 Radiative see-saw.

An alternative mehanism relies on the radiative generation of neutrino masses [H.Georgi & S.L.Glashow,

Phys. Rev. D 7 (1973) 2487; P.Cheng & L.-F.Li, Phys. Rev. D 17 (1978) 2375; Phys. Rev. D 22 (1980) 2860; A.Zee,

Phys. Lett. B 93 (1980) 389;. . ..℄ In this sheme, the neutrinos are massless at the tree level, but pik up

small masses due to loop orretions.

In a typial model [K.S. Babu & V.S. Mathur,

Phys. Rev. D 11 (1988) 3550℄ the see-saw

formula is modi�ed as

mν ∼
(
α

π

)
m2

l

M
,

where the prefator α/π ≈ 2× 10−3

arises due to the loop struture of the

neutrino mass diagram. Light neutrinos

are now possible even for relatively �light�

mass sale M of �new physis.�

The salar setor onsists of the multiplets

ν
L

ν
LℓR ℓL

η
L
+Φ1

+

<Φ >1
0

<χ >
L

0 <χ >
R

0

χL,R =
(
χ+, χ0

)
L,R

, Φ =

(
Φ0

1 Φ+
2

Φ−1 Φ0
2

)
, η+

L,R.

The diagram in the �gures is responsible for generation of Majorana masses for νL. The analogous diagram is

obtained by the replaement L → R and Φ+
1 → Φ+

2 .
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7.12 TeV-sale gauged B − L symmetry with Inverse see-saw.

Consider brie�y one more inverse see-saw model [S.Khalil, Phys. Rev. D 82 (2010) 077702℄.

The model is based on the following:

(i) The SM singlet Higgs boson, whih breaks the B − L gauge symmetry, has B − L unit harge.

(ii) The SM singlet fermion setor inludes two singlet fermions S± with B − L harges ±2 with

opposite matter parity.

The Lagrangian of neutrino masses, in the �avor basis, is given by

νLmDνR + νc
RMNS− + µsS−S−.

In the limit µs → 0, whih orresponds to the unbroken (−1)L+S
symmetry, the light neutrinos

remain massless. Therefore, a small nonvanishing µs an be onsidered as a slight breaking of a this

global symmetry and the smallness of µs is natural. Small µs an also be generated radiatively.

In the basis (νL,ν
c
R,S−), the 9× 9 mass matrix is




0 mD 0

mT
D 0 MN

0 MT
N µs


.

So, up to the notation, it reprodues all the properties of the double see-saw.
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