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‘ Abstract I

We present a classification for relativistic Gaudin models on G L-bundles over elliptic curve.
We describe the most general GL(N M) classical elliptic finite-dimensional integrable sys-
tem, in which Lax matrix has n simple poles on elliptic curve. Also, we provide a description
of this model through R-matrices satisfying associative Yang-Baxter equation. Finally, we
describe the inhomogeneous Ruijsenaars chain and show that it can be considered as a par-
ticular case of multispin Ruijsenaars-Schneider model. This poster is based on the paper [1].

1. Non-relativistic systems |

n our previous paper [2], we reviewed the non-relativistic classical integrable systems, which
are governed by linear classical r-matrix structures on elliptic curve. Let us briefly outline
their main features:

* The phase space consists of the many-body component C2M and also of n copies of spin
space parameterized by variables Sj; a=1,n,17 =1 N treated as the classical spin
variables. They are naturally arranged into ¢i/( N, C) valued matrix S¢.

 The spin component of the phase space is a reduced coadjoint orbit of GL(N,C) Lie group:
O//H. Instead of dealing with the reduced system, one can describe system on unre-

duced phase space. Such a system is non-integrable (it has additional terms in Lax
equation) unless we impose some additional constrains.

* The classification scheme for the considered models is as follows:

Classification scheme for (spin) Calogero and Gaudin type models:
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The gl37,, system in the box 1 is the most general model in this class of systems. All other
systems can be considered as particular cases of this one.

‘ 2. Relativistic generalizations |

The described models admit relativistic extensions. In paper [1], we discuss the relativistic
analogue of the above scheme. The classification is presented on the following scheme:

Classification scheme for elliptic relativistic models:
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The top of this scheme is the model described by GL 5 5,-valued matrices with n poles on the
elliptic curve (box 1). Describing it, we face a problem: the Poisson and r-matrix structures
for the spin elliptic Ruijsenaars-Schneider (RS) model (RS model is widely known as a
relativistic extension of Calogero-Moser system) are still unknown. This is why we deal with
the Lax equation only and do not provide a Hamiltonian description.

The Lax pair for the general model has a block-matrix structure with N x N blocks:
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ig=1
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Here q;; = ¢; — q;; To, is a special matrix basis in Mat(NM,C), a = (a1, a9) € Zy x Zy; E1(2)
is the Eisenstein function and ¢ is the modified Kronecker elliptic function ¢, (z,w,+u) =
exp(2mig#2) (2, wa +u). Our main result is the following

Theorem 1. The Lax equation with additional term
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for the Lax pair (1) is equal to the equations of motion:
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where J, J are generalized inverse inertia tensors. The Lax equation holds true on the con-
straints: y; = 0.

‘ 3. R-matrix description |

All models from our classification can be described in terms of R-matrices, satisfying the
associative Yang-Baxter equation:

RTQR% = ?i% ,122—10 T R%_Z i‘%? Rab - Rab(qa - Qb)'

We also require some additional properties — unitary condition and skew-symmetry.

The R-matrix formulation is pretty convenient. Different R-matrices correspond to differ-
ent rational and trigonometric limits of the classification scheme. The elliptic version is given
by the Belavin-Baxter elliptic R-matrix.

For the GL7%,, model, we have the following R-matrix Lax pair

n
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Theorem 2. The Lax equation with additional term:
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where I, (q) = 04R75(q) and
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for the Lax pair (2) is equivalent to the equations of motion:
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Here, generalized inverse inertia tensors J, J are expressed in terms of R-matrices. The Lax
equation holds true on the constraints: y; = 0.

‘ 4. Inhomogeneous Ruijsenaars chain |

The top model in case of minimal rank is gauge equivalent to the spinless Calogero-Moser
model. The same thing happens with their relativistic deformations — the relativistic top of
minimal rank and RS model:

L'MoP(S, 2) = g(z,9) L™ (2)g7' (2,9).

Gauge equivalence allows us to obtain a parametrization of spin variables by canonical ones.
We considered an inhomogeneous version of RS chain:

T(z) = LV1(SY, 2 = 2))LV1(S2, 2 = 29) ... LV1(S™, 2 - 2),
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We performed similar gauge transformation of monodromy matrix: T~(~z) = G lT(»)G. It
allows us to calculate explicit form of non-local Hamiltonians: H; = RestrT'(z). Representing

=2

T(z) in the additive form, we obtain the multispin RS model:
B n
Tij(2) = ), Sfjcb(z - 2k G - CJ} +nm).
k=1

From the explicit form of T, we see that spin variables are rank one matrices. Positions of
particles (qil) and spin variables are parameterized by the rest of canonical variables.
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