Relativistic GL(NM, C) Gaudin models on elliptic curve

E. S. Trunina, A. V. Zotov

Steklov Mathematical Institute of Russian Academy of Sciences, Gubkina str. 8, Moscow, Russia Moscow Institute of Physics and Technology, Inststitutskii per. 9, Dolgoprudny, Russia yelizaveta.kupcheva@phystech.edu

(2)

Abstract

We present a classification for relativistic Gaudin models on GL-bundles over elliptic curve. We describe the most general GL(NM) classical elliptic finite-dimensional integrable system, in which Lax matrix has n simple poles on elliptic curve. Also, we provide a description of this model through R-matrices satisfying associative Yang-Baxter equation. Finally, we describe the inhomogeneous Ruijsenaars chain and show that it can be considered as a particular case of multispin Ruijsenaars-Schneider model. This poster is based on the paper [1].

1. Non-relativistic systems

Theorem 1. The Lax equation with additional term

$$\frac{d}{dt}\mathcal{L}(z) = [\mathcal{L}(z), \mathcal{M}(z)] + \sum_{i,j=1}^{M} \sum_{c=1}^{n} \sum_{\alpha} (\mu_i - \mu_j) \mathcal{S}_{\alpha}^{ij,c} f_{\alpha} \left(z - z_c, \ \omega_{\alpha} + \frac{q_{ij} + \eta}{N} \right) E_{ij} \otimes T_c$$

where

$$\mu_i = \frac{\dot{q}_i}{N} - \sum_{a=1}^n S_{0,0}^{ii,a}, \quad i = 1, \dots, M$$

for the Lax pair (1) is equal to the equations of motion:

$$\begin{split} \dot{S}^{ij,a} &= S^{ij,a} J^{\eta}(S^{jj,a}) - J^{\eta}(S^{ii,a}) S^{ij,a} + \sum_{k \neq j} S^{ik,a} J^{\eta,q_{kj}}(S^{kj,a}) - \sum_{k \neq i} J^{\eta,q_{ik}}(S^{ik,a}) S^{kj,a} + \\ &+ \sum_{b:b \neq a}^{n} S^{ij,a} \Big(S^{ii,b}_{0,0} - S^{jj,b}_{0,0} \Big) \Big(E_1 \Big(\frac{\eta}{N} \Big) + E_1(z_{ab}) - \phi \Big(z_{ab}, \frac{\eta}{N} \Big) \Big) + \end{split}$$

In our previous paper [2], we reviewed the non-relativistic classical integrable systems, which are governed by linear classical *r*-matrix structures on elliptic curve. Let us briefly outline their main features:

• The phase space consists of the many-body component \mathbb{C}^{2M} and also of n copies of spin space parameterized by variables S_{ij}^a , $a = \overline{1, n}$, $i, j = \overline{1, N}$ treated as **the classical spin** variables. They are naturally arranged into $gl(N, \mathbb{C})$ valued matrix S^a .

• The spin component of the phase space is a reduced coadjoint orbit of $GL(N, \mathbb{C})$ Lie group: O//H. Instead of dealing with the reduced system, one can describe system on **unre-duced phase space**. Such a system is non-integrable (it has additional terms in Lax equation) unless we impose some **additional constrains**.

• The classification scheme for the considered models is as follows:

 $+\sum_{b:b\neq a}^{\prime\prime} \left(\mathcal{S}^{ij,a} \widetilde{J}^{\eta}_{a}(\mathcal{S}^{jj,b}) - \widetilde{J}^{\eta}_{a}(\mathcal{S}^{ii,b}) \mathcal{S}^{ij,a} \right) + \sum_{b:b\neq a}^{n} \left(\sum_{k\neq j} \mathcal{S}^{ik,a} \widetilde{J}^{\eta,q_{kj}}_{a}(\mathcal{S}^{kj,b}) - \sum_{k\neq i} \widetilde{J}^{\eta,q_{ik}}_{a}(\mathcal{S}^{ik,b}) \mathcal{S}^{kj,a} \right),$

where J, \tilde{J} are generalized inverse inertia tensors. The Lax equation holds true on the constraints: $\mu_i = 0$.

3. R-matrix description

All models from our classification can be described in terms of **R-matrices**, satisfying the **associative Yang-Baxter equation**:

 $R_{12}^{z}R_{23}^{w} = R_{13}^{w}R_{12}^{z-w} + R_{23}^{w-z}R_{13}^{z}, \quad R_{ab} = R_{ab}(q_a - q_b).$

We also require some additional properties — unitary condition and skew-symmetry.

The *R*-matrix formulation is pretty convenient. Different *R*-matrices correspond to different rational and trigonometric limits of the classification scheme. The elliptic version is given by **the Belavin-Baxter elliptic** *R*-matrix.

For the $\operatorname{GL}_{NM}^{\times n}$ model, we have the following *R*-matrix Lax pair

$$\mathcal{L}^{ij}(z) = \sum_{a=1}^{n} \operatorname{tr}_2(R_{12}^{z-z_a}(q_{ij}+\eta)P_{12}S_2^{ij,a}),$$

$$\mathcal{M}^{ij}(z) = -\delta_{ij}\sum_{a=1}^{n} \operatorname{tr}_2(R_{12}^{z-z_a,(0)}P_{12}S_2^{ii,a}) - (1-\delta_{ij})\sum_{a=1}^{n} \operatorname{tr}_2(R_{12}^{z-z_a}(q_{ij})P_{12}S_2^{ij,a}).$$

Theorem 2. The Lax equation with additional term:

$$\frac{d}{t}\mathcal{L}(z) = [\mathcal{L}(z), \mathcal{M}(z)] + \sum_{i,j=1}^{M} \sum_{a=1}^{n} \operatorname{tr}_{2}\left((\mu_{i} - \mu_{j})F_{12}^{z-z_{a}}(q_{ij} + \eta)P_{12}S_{2}^{ij,a}\right)$$

where $F_{12}^z(q)$ = $\partial_q R_{12}^z(q)$ and

 $\mu_i = \dot{q}_i - N \sum_{a=1}^n S_{0,0}^{ii,a} = \dot{q}_i - \sum_{a=1}^n \operatorname{tr}(S^{ii,a}), \quad i = 1, \dots, M$

The $gl_{NM}^{\times n}$ system in the box 1 is **the most general model** in this class of systems. All other systems can be considered as particular cases of this one.

2. Relativistic generalizations

The described models admit relativistic extensions. In paper [1], we discuss the **relativistic analogue** of the above scheme. The classification is presented on the following scheme:

Classification scheme for elliptic relativistic models:

The top of this scheme is the model described by GL_{NM} -valued matrices with n poles on the elliptic curve (**box 1**). Describing it, we face a problem: the Poisson and r-matrix structures for the **spin elliptic Ruijsenaars-Schneider (RS) model** (RS model is widely known as a relativistic extension of Calogero-Moser system) are still unknown. This is why we deal with **the Lax equation** only and do not provide a Hamiltonian description.

for the Lax pair (2) is equivalent to the equations of motion:

$$\begin{split} \dot{\mathcal{S}}^{ij,a} &= \mathcal{S}^{ij,a} \mathcal{J}^{\eta}(\mathcal{S}^{jj,a}) - \mathcal{J}^{\eta}(\mathcal{S}^{ii,a}) \mathcal{S}^{ij,a} + \sum_{k \neq j} \mathcal{S}^{ik,a} \mathcal{J}^{\eta,q_{kj}}(\mathcal{S}^{kj,a}) - \sum_{k \neq i} \mathcal{J}^{\eta,q_{ik}}(\mathcal{S}^{ik,a}) \mathcal{S}^{kj,a} + \\ &+ \sum_{b:b \neq a}^{n} \left(\mathcal{S}^{ij,a} \widetilde{\mathcal{J}}^{\eta}_{a}(\mathcal{S}^{jj,b}) - \widetilde{\mathcal{J}}^{\eta}_{a}(\mathcal{S}^{ii,b}) \mathcal{S}^{ij,a} \right) + \sum_{b:b \neq a}^{n} \left(\sum_{k \neq j} \mathcal{S}^{ik,a} \widetilde{\mathcal{J}}^{\eta,q_{kj}}_{a}(\mathcal{S}^{kj,b}) - \sum_{k \neq i} \widetilde{\mathcal{J}}^{\eta,q_{ik}}_{a}(\mathcal{S}^{ik,b}) \mathcal{S}^{kj,a} \right) \right) \end{split}$$

Here, generalized inverse inertia tensors J, \tilde{J} are expressed in terms of R-matrices. The Lax equation holds true on the constraints: $\mu_i = 0$.

4. Inhomogeneous Ruijsenaars chain

The top model in case of minimal rank is gauge equivalent to **the spinless Calogero-Moser model**. The same thing happens with their relativistic deformations — the relativistic top of minimal rank and RS model:

 $L^{rel top}(S, z) = g(z, q) L^{\mathrm{RS}}(z) g^{-1}(z, q).$

Gauge equivalence allows us to obtain a parametrization of spin variables by canonical ones. We considered an **inhomogeneous version of RS chain**:

$$T(z) = L^{N\eta}(S^1, z - z_1)L^{N\eta}(S^2, z - z_2) \dots L^{N\eta}(S^n, z - z_n),$$
$$\tilde{L}^k_{ij}(z) = \phi(z, \bar{q}^{k-1}_i - \bar{q}^k_j + \eta) \frac{\prod_{l=1}^N \vartheta(\bar{q}^k_j - \bar{q}^{k-1}_l - \eta)}{\vartheta(-\eta) \prod_{l:l\neq j}^N \vartheta(\bar{q}^k_j - \bar{q}^k_l)} e^{p^k_j/c}.$$

We performed similar **gauge transformation** of monodromy matrix: $\tilde{T}(z) = G^{-1}T(z)G$. It allows us to calculate explicit form of non-local Hamiltonians: $H_i = \underset{z=z_i}{\operatorname{Res}} \operatorname{tr} \tilde{T}(z)$. Representing $\tilde{T}(z)$ in the additive form, we obtain the multispin RS model:

The Lax pair for the general model has a block-matrix structure with $N \times N$ blocks:

$$\mathcal{L}(z) = \sum_{i,j=1}^{M} E_{ij} \otimes \mathcal{L}^{ij}(z) \in \operatorname{Mat}(NM, \mathbb{C}), \quad \mathcal{L}^{ij}(z) \in \operatorname{Mat}(N, \mathbb{C}),$$

$$\mathcal{L}^{ij}(z) = \sum_{\alpha} \sum_{a=1}^{n} T_{\alpha} S_{\alpha}^{ij,a} \varphi_{\alpha} \Big(z - z_{a}, \omega_{\alpha} + \frac{q_{ij} + \eta}{N} \Big),$$

$$\mathcal{M}^{ij}(z) = -\delta_{ij} \sum_{a=1}^{n} T_{0} S_{0,0}^{ii,a} \Big(E_{1}(z - z_{a}) + E_{1} \Big(\frac{\eta}{N} \Big) \Big) - \delta_{ij} \sum_{\alpha \neq 0} \sum_{a=1}^{n} T_{\alpha} S_{\alpha}^{ii,a} \varphi_{\alpha} (z - z_{a}, \omega_{\alpha}) - (1 - \delta_{ij}) \sum_{\alpha} \sum_{a=1}^{n} T_{\alpha} S_{\alpha}^{ij,a} \varphi_{\alpha} \Big(z - z_{a}, \omega_{\alpha} + \frac{q_{ij}}{N} \Big).$$
(1)

Here $q_{ij} = q_i - q_j$; T_{α} is a special matrix basis in $Mat(NM, \mathbb{C})$, $\alpha = (\alpha_1, \alpha_2) \in \mathbb{Z}_N \times \mathbb{Z}_N$; $E_1(z)$ is the Eisenstein function and φ is the modified Kronecker elliptic function $\varphi_{\alpha}(z, \omega_{\alpha} + u) = \exp(2\pi i \frac{\alpha_2}{N} z) \phi(z, \omega_{\alpha} + u)$. Our main result is the following

n $\tilde{T}_{ij}(z) = \sum_{k=1}^{n} S_{ij}^{k} \phi(z - z_k, q_i^1 - q_j^1 + n\eta).$

From the explicit form of \tilde{T} , we see that spin variables are rank one matrices. Positions of particles (q_i^1) and spin variables are parameterized by the rest of canonical variables.

References

- [1] E. Trunina, A. Zotov, "Lax equations for relativistic GL(NM,C) Gaudin models on elliptic curve", (2022) [arXiv:2204.06137].
- [2] E. Trunina, A. Zotov, "Multi-pole extension of the elliptic models of interacting integrable tops", Theoret. and Math. Phys., 209:1, 1331–1356, (2021) [arXiv:2104.08982].
- [3] A. V. Zotov, A. V. Smirnov, "Modifications of bundles, elliptic integrable systems, and related problems", Theor. Math. Phys., 177, 1281–1338 (2013).
- [4] N. Nekrasov, "Holomorphic Bundles and Many-Body Systems", Commun. Math. Phys. 180, 587–604, (1996) [arXiv:hep-th/9503157].
- [5] A. V. Zotov, A. M. Levin, "Integrable Model of Interacting Elliptic Tops", Theoret. and Math. Phys., 146:1, 55–64 (2006).

In memory of Bonya, the most intrepid pug