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Artificial Intelligence

* What is Artificial Intelligence ?




Why everyone is talking about Al now: sometimes it
works better than a human

In image classification task

* human erroris 5.1%

* Al erroris 3.57%




Digital twins




Neuro-rendering

Modeling 3D scenes from images with high realism
[Aliev et al. ECCV 2020]



Neuro avatars

[Burkov et al. CVPR2020] [Grigorev et al. CVPR2021]



Human image synthesis and deepfakes

[Zakharov et al. ICCV 2019]



General structure

* ARTIFICIAL INTELLIGENCE
Al is the broadest term, applying to any technique that enables computers to
mimic human intelligence, using logic, if-then rules, decision trees, and machine

learning (including deep learning) Data Analysis

* MACHINE LEARNING
The subset of Al that includes abstruse statistical techniques that enable

machines to improve at tasks with experience. The category includes deep Data Mining. ML
learning algorithms are often

used for pattern
mining and extraction

* DEEP LEARNING

The subset of machine learning composed of algorithms that permit software
to train itself to perform tasks, like speech and image recognition, by exposing
multilayered neural networks to vast amounts of data




Sea Ice Regional Forecasting

Technologies:
Challenge: year-round navigation along v Opgratlonal data collection system (remote sensing, weather
the Northern Sea Route requires reliable stations, buoys, etc.)
and efficient navigation systems v" Ocean physical model

v Al for

» Fast and accurate forecasting
Subproblems: > Assimilation of measurement data (remote
v weather forecasting sensing, ships, buoys, weather stations)
v' sea current forecasting > A.ccounj[ing for risk§ and uncertainties
v seaice forecasting »  Simulation of subgrid processes
v’ multi-agent system for navigation and v Final coupling of phys. models and data-driven models for accurate
optimization of ship logistics in the Arctic and reliable prediction of sea currents and sea ice conditions
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E-risks: forecast horizon is 5 — 30 years

The number of incidents of physical climate risks over the past 50 years (1970-2020) has
increased 4.5 times
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General scheme of damage assessment from E-risk

Losses = Risk of an Incident X Vulnerability of a Company

Machine Learning Data-driven analysis

» Historical data * Insurance data

» Locality of a forecast « Remote sensing data + ML
» Time-space models (RNN-CNN architectures) « Transactional analytics

ALT, year=1901-1905

Example of E-risk: Permafrost Melting

Gas emission crater in
YaNAO?

» Permafrost modeling
* A mixture of Physics (Heat equation) and ML

(model correction)

» Importance
* 65% of the country land, major export Demaged buiing B B
caused by instability ;

resources (gas, oil, metals) in foundation, B
* access infrastructure reliability, both short- Chersky settiement?

term and long-term

Kudryavtsev model results example




Natural Disasters Modeling: Extreme Rain, Wind, Temperature

» Extreme Events are Hard to Predict:
A mixture of Machine Learning (ML) and Probabilistic Modeling (PM) works the best
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» Noise and Trend are meaningful:
pure ML and pure PM fail
Extreme rains, snow, temperate anomalies can

be predlcted in this way Precipitation (left) and Temperature (right) prediction




Math. ML Tasks

o Dimensionality Reduction: lower-dimensional features, preserving
some properties of data

o Regression: predict some real-valued output variable for some input
parameters (ship fuel consumption depending on weather conditions,
route, etc.)

o Classification: set a label for each object (e.g. image classification)

o Clustering: partition objects into some “homogeneous” groups (e.g.
divide documents into groups with similar topics)

o Ranking: rank objects according to some metric
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(Passive) Supervised Learning

raw unlabeled data random sample
L1, L2, L3y ...

labeled training instances

oh
ba (1,91), (T2,Y2), (T3, Y3), -

nnnnnnnn

supervised learner expert / oracle

induces a classifier analyzes experiments
to determine labels

x(0)

Y

Person
Bird
House



Supervised learning

o Training data: sample S,,, of size m drawn i.7.d. according to
distribution D on X x Y

Sm =1{(X1,91),- -+, Xm, Ym)}

o Empirical error for f € F' and sample S,,

L(f) = = S Uf(x), v)

m
1=1

o Generalization error: for f € I

L*(f) — i*(x,y)ND[l(f(X)a y)]




Supervised learning

o Let us select a hypothesis set F' = {fy, 0 € 6}

o Find hypothesis f € F' minimizing empirical error

m

1
L(0) = — E [(fo(X;),y;) — min
=1

HeO



ML pipeline

1. Decompose an applied problem

2. Define
v Features for object description
v' Method/Function class
v Loss function
v Validation approach



Supervised Learning: Regression

o Loss function: [: Y XY — R, a measure of closeness, e.g.
(y,y)=(@—vy) orl(y,y’) = |y — ¢'|” for some p > 1

o Hypothesis set: linear functions 35 T R R R R

F={x—-w-x'+b: weR™ pcR}



Supervised Learning: Linear Regression

o Optimization problem: empirical risk minimization

o Rewrite objective function as F(W) = - | XW — Y ||?, where
- - W - -

x; 1 o Y1
X = : : ERmx(d+1),W: : Y = )

_Xm ]._ b _ym_

o Solution:

W= (X"X)"1X"Y if X"X invertible



Supervised Learning: Linear Regression

o Optimization problem:

m

_ T L2 2 :
L(w,b)—;(w x; +b—y;)+ A||lw|| —>r‘r’1v}£1,

where A > 0 is a regularization parameter

o Solution:

W= X'X+AI)! X'Y

always invertible!



Supervised Learning: Linear Regression

o Dual solution: thus we get that

W=X"X+A)"X'Y=XT(XXT +AI)" Y

-~

new variable o

o With
a=(XX"+ )Y,

we can represent W as

W=X"a= iaixT

7
=1

o We can use dual representation of the solution

AN

fx)=x-W=) ai(x-x])

1=1



Kernels
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For x = (z1,%2) € R?, let &(x) = (22,V2z122, 22) € R?



Kernels

o ldea:

o Define K : X x X — R called kernel, such that
d(x) - d(x)'" = K(x,x')

o K is often interpreted as a similarity measure

K(x',x) =®&(x') - &(x)' [dot product of features]
= 21(21)” + 221222175 + 75(25)°

= (212} + xz225)? = (X' - XT)2

o Gaussian kernels:

]2
K(x,x’):exp<—”X x| ),07&0

202




Supervised Learning: Kernel Ridge regression

True function

o Usual linear ridge regression in dual representation

Foo = aux-x))

with

(XX + )Y

o Kernel ridge regression

prediction

fx) =) 0i(@x) - D(x))7) = ) K (xi,%) o

ASMIAKAAN e
A '0"'0
IO

with

a=(PX) - dX)" +AI)7'Y = (K+ )7Ly,
where

K = {®(x:) - B(x;) 721 = {K (%i, %)}



Supervised Learning: Decision Trees

o Classification and Regression Trees:

— Decision rules
— Contains one score in each leaf value

Does the person

Input: age, gender, occupation,... = ..
P B=) 8 P like computer games?

prediction score in each leaf —> +2 +0.1 -1



Supervised Learning: Tree Ensembles

X, st
tree2

Use Computer

Daily

f @ )=2+09=29 J= -1+ 0.9= -0.1

Prediction is a sum of scores predicted by each of the tree

o Model: we have T trees

Fr(x) = 7 3" fux), fix) € .

where F' is a space of functions, containing all regression trees

o Parameters: structure of each tree, and the score in the leaf
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Neural Networks

Feed-forward Steps:
o 22 — Wy
o al¥) = 5(2%), o(t) = max(0,t) (ReLU)
o 23 — 9@ ,®

t

o fo(x) =a® =p(z°), p(t) = 15



Deep Networks

Deep Neural Network

input layer hidden layer 1 hidden layer 2 hidden layer 3
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o al¥) = 5(2%), o(t) = max(0,t) (ReLU)
o 23 — 9@ ,®

t

o fo(x) =a® =p(@°), p(t) = 15



Universal Operator Approximator Theorem

Theorem 1 (Universal Approximation Theorem for Operator).

Suppose that ¢ is a contznuous non-polynomial function, X is a Banach ) Inputs & output ° nuttuncton 0 output function G ()
space, K, C X, K C R? are two compact sets in X and RY, respectively, Z&; at“;ff’\s.‘i"3°rs gy ooy
Vis a compact set in C(K,), G is a nonlinear continuous operator, us funetion =) \ a7 NS N
which maps V into C(K ). Then for any € > 0, there are positive integers /i(i’L Network [ > G(u)(y) € R B /
n, p and m, constants (, f 0{-‘, S R, wy € R, x€K,i=1,...,n y € R smT T
k=1,...,pandj=1,...,m, wch that ¢ cnedDomont g Uneacked Decpone
u(an) r® u(z1)
u | u(z2) (BN} @ u | 152)
P m Hen B} 6 e \
=Y D de [ D &uly) 6 |olwe-y+Ei)| <€ o ® P e
k=1 i=1 j=1 —_— a »/g -® /
. . . trunk v — K"
branch '®
( 1 ) : Train & test (antiderivative)
S 10° |
holds for allue V and y € K,. Here, C(K) is the Banach space of all con- rh I |+‘
tinuous functions defined on K with norm || f|| o i, = maxeek|f(x)] - I'l‘l l |_I_| I'I'I|+| I‘hrh

FNN

(best)

ResNet Seq2Seq Seq2Seq 10x  Stacked Stacked Unstacked

(best)

(best) (best) (no bias) (bias) (no bias)

Chen, T., & Chen, H. (1995). Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems.

IEEE Transactions on Neural Networks, 6(4), 911-917.

Lu, Lu, et al. "Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators." Nature

Machine Intelligence 3.3 (2021): 218-229.

Unstacked

(bias)



MLPs and Universal Function Approximators

Theorem: There exists a Boolean function of
d > 2 variables that requires at least 29/d

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems, 2(4):303-314, 1989. BOOIea n gatesr rega rd IeSS Of depth I
K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approximators. Neural Networks, 2(5):359-366, 1989.
Kriegeskorte N, Golan T. Neural network models and deep learning-a primer for biologists. arXiv preprint arXiv. 1902.



What works in practice?

Exponentially Expensive Models to Train

Biases are important!!!

Extremely Overparameterized Models

Amir Gholami, Zhewei Yao, Sehoon Kim, Michael W. Mahoney, Kurt
Keutzer, Al and Memory Wall, Riselab Medium Blogpost, 2021.

Parameter Count (Billion)

Training Compute (PFLOPS)

Training FLOPs Scaling for SOTA CV, NLP, and Speech Models
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Convolutions
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Convolutions
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Convolutions
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Convolutional Neural Networks

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected
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boat (0.94)
bird (0.02)




Convolutional Neural Networks

Convolution

Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected
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Deep Learning Loss Landscapes

HIGH RESOLUTION CAPTURES

m

L(9) = iz:, (o), 1), 6 € ©

Video credit to losslandscape.com



Challenges

Loss surface:
* Non-convexity
 Many local minima
« Saddle points
 Flat regions

Some phenomena:
« The algorithms based on gradient descent achieve almost zero loss with Deep
Neural Nets although the loss functions of DNNs are non-convex
« Generalization: There is no overfitting despite that the number of parameters is
much bigger than the number of data points (overparametrization)



Why does DL work?

« What does a DL system really learn?

Probability distributions on manifolds

« How does a DL system learn? Does it really learn or just memorize?

Optimization in the space of all probability distributions on a manifold. A
DL system both learns and memorizes
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Semi-Supervised Learning
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exploit the structure raw unlabeled data random sample
In unlabeled data Loy LD LGy = « »

labeled training instances

-
5 (Z1,Y1),(T2,Y2), (3, Y3), - -

semi-supervised learner expert / oracle
Induces a classifier analyzes experiments

to determine labels



The word is not flat (nonlinear)

Linear interpolation Nonlinear interpolation
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Manifold Learning

Manifold covered by a single chart (surface in

M = {z =g(2) € R*: z € Z C R¥}

unknown § -dimensional surface — Data manifold
covered by single chart ( defined on Coordinate space 7, C R?




Latent Generative Model

z ~ p(2)

z ~ p(z|ge(2)) -

p(2)

G(2)




Generative Modeling tasks
Map the given distribution P into the given distribution Q

Case 1: noise — data

synthetic data generation/data manipulation

Noise (latent) distribution Data distribution

Case 2: data — data

unpaired style transfer, super-resolution, domain adapatation

ShL g

P Q

Data distribution Data distribution




Generative Adversarial Network

minmax V (D, G)
G D

V(D,G) = Egnpyy(a)108D(2)] + Eznp, () [log(1 — D(G(2))

/ D real data o
 ~ Puata (@) sigmoid
1 @ \functlon
@ Discriminator 1
- Network
z ~ p,(z) | Generator D(x) 0
® Network A
prior G(Z) generated
T data




OT for Generative Modeling

OT cost as the loss (WGANs)?

S By

Fake distribution

OT cost
as the loss

(= o(
\&
P eoeﬂio‘\(“

Input distribution

function

YV

True distribution

'1
-
S

Input
distribution

OT map
as the
generative

map

Output
distribution

2Martin Arjovsky, Soumith Chintala, and Léon Bottou (2017). “Wasserstein

generative adversarial networks”.
PMLR, pp. 214-223.

In: International conference on machine learning.



Optimal Transport

Let c: X x Y — R be a cost function, e.g., c(x,y) = M

c(x21T(x1))
(%2))

c(xal

The optimal transport cost between measures IP and Q is

Cost(P,Q) = _inf /X ¢(x, T(x))dP(x).

THP=Q

The map T* attaining the minimum is called the optimal transport map.

1Cédric Villani (2008). Optimal transport: old and new. Vol. 338. Springer Science
& Business Media.



Outline

» Motivation

» Supervised Learning

» Neural Networks

» Unsupervised Learning and Generative Modeling

» What’s next



ML pipeline
1. Decompose an applied problem
2. "Formulate” biases

3. Define
v Features for object description
v' Method/Function class
v Loss function
v Validation approach



What’s next?
1. Lecture on Overview of Science-Informed ML

2. Seminar based on Sci-ML problem

3. Lecture on Applied Use-Cases of Sci-ML
v' Super-resolution of weather forecasts
v' Sea Ice Regional Forecasting
v Fusion of heterogeneous data for modeling of oil-fields.
Geological realism



Questions?



Active Learning
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Inspect the raw unlabeled data
unlabeled data L1y LY LGy » « »

request labels for selected data
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active learner expert / oracle
induces a classifier analyzes experiments

to determine labels



