Rotating black holes



Kerr metric

2 4 in? 6 )3 °
ds® = — (1 - '”;7“) dt* — 2 Lt dg + = sin® 0dg® + Podr? + p2d6?
p p p A
A(r) =r? = 2mr + a®
p(r,0)? = r? 4+ a®cos* 0
Y(r,0) = (r° + a*)* — A(r)a*sin?

» Two free parameters m and a (rotation parameter), J = Ma.

& This metric is time-independent and axially symmetric, with the two com-
muting Killing vectors £ = 0, n = 0.

& Stationary (but not static) = there is a term g;4, no symmetry t — —t
(More invariantly, this is the statement that the Killing vector t is not
hypersurface-orthogonal)

& It reduces to the Schwarzschild metric for a = 0. Also reduces to the
Minkowski spacetime when m = 0, but in 'weird’ rotating coordinates.

& Electric charge can be added to this solution by the same replacement
m — m — Q?/(2r).



Kerr metric

2 4 in? 6 ) .
ds® = — (1 - ”;7“) dt* — 2 Lt dg + = sin® 0dg® + Podr? + p2d6?
p p p A
A(r) =r? = 2mr + a®
p(r,0)? = r? 4+ a®cos* 0

Y(r,0) = (r° + a*)* — A(r)a*sin?

» A symmetry 0 — 0 — w. Also a symmetry (t,¢) — (—t, —¢), related to
circularity property of the solution. (Running backwards in time negative
spin = running forward in time with positive spin.)

E) N ) NAE@) = &) N ) N () = 0.

& Asymptotically

2 4masin® 6
ds® ~ — (1 — —m> dt? — 0 Tt + dr® + r2 (d62 + sin® 0de?)

(A T



Kerr black hole: ergosphere

2 4 in? 0 )y 2
ds? = — (1 _ ”;”) dt* — L T dg+ = sin® dg? + %er + p2dh?
p p p

A(r) =r? = 2mr + a®
p(r,0)? = r? 4+ a®cos* 0
Y(r,0) = (r° + a*)* — A(r)a*sin?

& Static observers, remaining at fixed values of the spatial coordinates (r, 6, ¢),
with 4-velocity

uOt ~ é‘O{
& A static limit or infinite redshift surface for such observers?

& =gu=0

gi(r,0) =0 <& p?—2mr =1r%+a’cos’ — 2mr = 0

rsi(6) =m+\/m2—a260829



Kerr black hole: ergosphere

® No curvature singularity at » = ry;.

® |t defines the static limit surface for static observers: no static observers
can exist for r < rg

® Also defines a surface of infinite redshift for static observers.
& Killing vector & = 0; becomes null.

® For the Schwarzschild metric, rg; — 2m = 7, reduces to the Schwarzschild
radius.

However this surface is not a horizon



Kerr black hole: ergosphere

Although no static observers can exist for r < ry; this does not by itself
imply that one cannot escape from that region. Stationary observers can
escape with u® ~ &% + QOn®.

& This surface is timelike, it has a spacelike normal.

S(r,0)=r—1rgq(0) =0
Normal vector Ny =0,S: Ny =(0,1,—drg/do,o0)

o ) 1 m?a? sin® 0
Na T =g + g7 (dral0)/d6)" = 2mrg m2 — a2 cos? 6 20
S

Clearly cannot be a horizon



Kerr black hole: inside the ergosphere

» Stationary observers u® ~ £% + Qn®.

* u® is timelike when g4 + Zng -+ Q29¢¢ <0

Q_(r,0) < Q(r,0) < Qy(r,0)

<0 for r > ry

—Ote £ \/92 — g1t 9
0L = ¢ b i Q. < = for r =ry

Yoo > () for r <rgy

# Outside the ergosphere stationary observers can rotate either with or
against the rotation of the black hole. On and inside the ergosphere
a stationary observer only rotate with (i.e. to be dragged along by) the
black hole.

# One can add a small motion in the direction of r or # and see that one can
escape from the inside of the ergosphere, as long as stationary observers
exist.



Kerr black hole: Horizon

& Stationary observers cease to exist when

A
9t2¢—gttg¢¢=A(r)sin29 =0 also gr"“:?
A(T):T2—2m’r‘—|—a2:0 :> ri:mi\/mZ_&2

* We note that re =m+vVm?2—a2<m+vVm2—a2cos?0 = ry(6)

Equality is only at the poles 8 =0, 7
& Hypersurface of constant » with the normal N, ~ 0,r becomes null at

4.
go‘ﬁaar(?@r =0



Kerr black hole: Horizon

» At r = r the stationary observers have the angular velocity

a
2 2
'r++a

Qh — w(r+) —

» The Killing vector corresponding to the stationary observers there is null

En = Eq, =&+ U = (gaﬁgggf) lp=r, =0
& This surface is a Killing horizon and also the event horizon

» Singularity occurs at p* =r? +a%cos?f =0 = r =cosf =0 It is a ring
singularity, 2 + y? = a?, z = 0.



Important surfaces in the Kerr metric

Ring singularity

Ergoregion

-Inner horizon

Event horizon

Static limit

[from d'Inverno's book]



Kerr summary

AXis of rotation

Inner
horizon

Ergosphere

[ from nrumiano]




Killing horizon vs event horizon

¢ Rigidity theoreom (Hawking): The event horizon H of a real analytic, station-
ary, regular, vacuum spacetime is a Killing horizon: 3 a Killing field £ normal

to H which verifies k2 = 0 on H.

& For the outer horizon of the Kerr spacetime, this Killing vector is

a

k=0
t+2M7"_|_

D
& One can define the surface gravity x4 of H as
KMV EY = ki k"

& The surface gravity is constant on H and is related to the Hawking tempera-
ture Ty = ko /2w



Killing horizon vs event horizon

Stationary,
electro-vacuum,
analytic,
non-degenerate,
connected,
regular black hole
Kerr-Newman
INn the exterior region

talk by Piotr T. Chrusciel



Kerr singularity, extremal black holes, time machines

® For a > M there is no horizon = naked singularity
& Extremal black hole a = M

® Time machine inside Kerr black hole

2 4 in? 6
ds? = — (1 - ”;T) dr* — L 2 d
p p

¥ =(r*+ a2)2 — A(r)a®sin® 0 = (r* + a*) p° + 2mra® sin® 6
Consider p close to 0, i.e. close to the ring singularity.

There is a region (r < 0) where the sign changes.

0/0¢ is timelike. Consider now t = const, r = const, 8 = const, and motion
along ¢—direction = closed timelike curves.

Decreasing ¢ = time machine



Black holes are bald

e (Gravitational collapse...

¢ Black holes eat or expel surrounding matter

e Their stationary phase is characterised by a limited number of charges
e No details about collapse

e Black holes are bald

% No hair theorems/arguments dictate that adding degrees of freedom
lead to trivial (General Relativity) or singular solutions.

» E.g. in the standard scalar-tensor theories BH solutions are GR black

holes with constant scalar.
." settling
down >
M, J, Q)
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Example of hairy black hole

BBMB SO|UtiOn Bocharova et al’70, Bekenstein’74

Conformally coupled scalar field:

o) 1 4
g/u/a¢ /F(m—§8 gb(’) ¢—ER¢2>CZ:E

Static spherically symmetric (nontrivial) solution:

2 dr?
ds® = — (1 — T) dt* | d - (d92 + sin? 9ng2)

2
’ (1=
Secondary scalar hair: 3 m
¢ —
4G r—m

NB. The geometry is of that of extremal RN.
The scalar field is unbounded at r=m



Gauss-Bonnet term

1
/ d*z\/=¢ [ PR — §gwaﬂ¢a,,¢ + \oG
Gauss-Bonnet invariant: G = R,oa R — 4R, R* + R?

Horndeski theory with G5 o< In|X| = assumption (iii) is violated.

EoM for the scalar: ¢ = —\G

Source for the scalar: it cannot be trivial in BH background  campbell et al’92
Kanti et al’96

Sotiriou and Zhou’1l3



Solutions in "Galileon theory"

[ LACT = R —n(0¢)? + BG*0,00,¢ — 2A. j

ds® = —h(r)dt* 1 - r2dQ?

¢ = qt + Y(r) Time-dependent scalar !

Asymptotically dS/AdS:

Ae
f=h=1-2_202 @p’:i%m’ Aeff_: _%

r 3




Properties of disformed Kerr in modified gravity

EB, T.Anson, C.Charmousis, M.Hassaine'20

& Ergosphere (static limit): static timelike observers can no longer exist, the Killing vector
[* =(1,0,0,0) becomes null. l.e. g+ =0, or

git =0 =>["“E—M+ \/M2—CL2(ZOS29 )

& Stationary limit. Observers constant (r, ), with a 4-velocity u = 0;+w0d,,. These observers
cease to exist at the surface G11G, — §f¢ = 0, I.e.

IM Da?r sin? 0 B

p*(r, 0) ’

P(r,0) =21 g% — M7y +

The surface is timelike and thus cannot be a horizon.

& Horizon: a null hypersurface of the form r» = R(#). The normal has components
n, = (0,1, —R'(0),0)

The condition n? = 0 yields
4 )

2MDa?Rsin?§
pA(R,0)
\- )

R'(0)?> + P(R,0) = R'(#)> + R*+a* —2MR + 0




Surfaces

stationary

Q limit

ergosphere
horizon

v




Gravitational waves



& The solutions considered so far do not reveal dynamical degrees of freedom
of the gravity theory.

& Even collapsing shell solution does not involve dynamics of gravity. Dy-
namics of the solution is fully determined by the matter degrees of freedom,
i.e. by the dynamics of the collapsing shell.

& Gravitational waves do contain dynamical degrees of freedom of GR.



Degrees of freedom in GR

L/

® g, contains 10 independent components

D(D+1)
2+ — 10,

» There is gauge freedom, x* — Z*(x), we can kill 4 components, i.e.
10-4=6.



Degrees of freedom in GR

® g, contains 10 independent components D(gﬂ) = 10.

» There is gauge freedom, x* — Z*(x), we can kill 4 components, i.e.
10-4=6.

* However in GR there are only 2 dynamical d.o.fs, corresponding to 2
polarization. Why the mismatch?

& There are constraints in the theory that can be revealed by considering
the Hamiltonian formalism.

However it is difficult



Example of Maxwell field

# Maxwell field in flat spacetime

1
Ly = _ZFWFW’ F,, =0,4, —0,A,

» A, has 4 components
* Gauge invariance A, —+ A,, + 0«

$ 4-1 = 3 (should have 2)

» A, = (Ag, Al + i), ;AT = 0. We can set o = 0 by a gauge choice.
& 0-component: —Ag + AAy — %(—AO + &;A?) =0

Ag is physical but non-dynamical

Solution with a source charge, A, = (ﬁ,0,0,0)



Linearised gravity

1) —
g,uV — g,l(u/) — nlﬂ/ _|_ huy ‘h/u/‘ << 1

We will drop terms which are quadratic or of higher power in i,

g(l)/w = ph — pv

the linearised vacuum Einstein equations GE}V) =0

¢
Oy Oy h’, + 050,17, — 0,0yh — Dby — 1005 W + 17, 0h = 0

Can be obtained from the quadratic Minkowski space field theory action for a
free massless spin-2 field described by A, .

S[hu] = / d*x L(hu,,0shu)

Ly, Os ) = = Gy o 7 + Shyueh™ + 3R he — 5hoht,

Indeed 0S[hyu) = —/d4x G ShH



Linearised Einstein Equations

In the presence of matter we have GE}V) = 87TGNTL(£)

Only the zero'th order term in the h-expansion appears on the right hand side
of this equation.

6‘MT(O)W — 0 Compatible 8MG(1)W — 0

V, G =0



Gauge freedom in linearised gravity

Diffeomorphism invariance of GR: we can freely choose coordinates without
changing the form of equations of motion

- oxH Ox¥
r =y =y(z) Jap(y) = 9% 997 Gy ()

v

(Similar to gauge invariance of the Maxwell field A, — A,, 4+ 0,,)

The old and new h,, is taken at the same coordinates

Note relation to the Killing tensor



Classes of perturbations
8/“) - ‘zj-n) SJFD = Liﬂ,.)
T‘/Lr.e,e, l"(]\':e% o‘!’ Pe_r hrba’h'oﬁ’& .’seuﬂar, m.e%or, exusor
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Classes of perturbations

\NL col z'(M)O§Q« Scwae/ E=-B-= O) FL:O
0~ 4= b
L:U\LCdr?Qe,rl E:hs{u'm. ec[cwcl-:;wg;

6700 = QA.W [W— Wn-d’ﬁmam:cs»@)
é'?o[ = (L\I{E "'Ji ASE [S- W%muimﬂ«)
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Linearised Einstein Equations

1
We can choose gauge 5’Mh“)\ — 50\h =0

9, A" = 0

As in Maxwell theory, this gauge choice does not necessarily fix the gauge com-
pletely.



Wave equation for graviton

In harmonic gauge the linearised Einstein equations are simply

Ohy — 310k = —167GN T

The vacuum equations (or the equations in a source-free region of spacetime)
are just

T® =0 = Ohy =0

It is convenient to consider the linear combination

Py = hyw — %”uvh

_ )
P —167GNTY)
o.h", = 0 .

- J

One of the solutions is the retarded solution

O — — —
8 16y [ T E=PL)
JZAND —

T =7




Wave equation for graviton

— )
Ry —167GNT )
o.h", = 0 .

- J

One of the solutions is the retarded solution

0 — =/ =
8t [ B =L

7 =7

This solution is automatically in the harmonic gauge because of 9,79" =0

The general solution is then a sum of this particular solution of the inhomoge-
neous equation and the general solution of the homogeneous equation



Polarization of gravitational waves

The linearised vacuum Einstein equation in the harmonic gauge,

hyy =

7 1k, x™

Plane wave solution = €€

where €, is a constant, symmetric polarisation tensor and &% is a constant
wave null vector k., k% = 0.

The Einstein equations predict the existence of gravitational waves travelling
along null geodesics, i.e. at the speed of light.

Too many parameters are to specify



Polarization of gravitational waves

— ; 8%
First of all, the harmonic gauge condition implies that

Oh*, =0 = ke, =0

Make use of the residual gauge freedom hyw — hyy +0,V, +0,V,

= OMhy,, — 0"h,, + 0V,
The gauge condition is invariant precisely under transformations with
1k,

Take the solution of the form V,, = v,e

€aB — €aB T i(kavg + /-Cgva) — ina5k7U7

Nuv 9\ VA

V,=0

We can choose the v, in such a way that the new polarisation tensor satisfies

ke, =0 €no = €, =0 (8 independent conditions)

2 independent polarisations



Polarization of gravitational waves

In terms of h,,, we can write

K'hy =0 , hy=0 , h% =0 Transverse traceless gauge h’}
Example:
Consider a wave travelling in the 23-direction,  k* = (w,0,0,%%) = (w, 0,0, w)

It is easy to see that the only independent components are €, with a,b =1, 2.

€qb 1S symmetric and traceless = €11 = —€99, €12 = €97.
(O 0 0 O\
0 C; Cy O

=0 Gy —Cp 0
\0 0 0 0/

The solution for the metric itself: ds? = —dt? + (6gp + hap)dz®dz’ + (dz3)?

with hgp, = hep(t F 2°) symmetric and traceless.



Effects of a gravitational wave

Influence of Curvature on Particle Trajectories (gravitational tidal forces):

How gravitational tidal forces change trajectories of nearby particles ?

i i p A2 TH d .v.d A
the geodesic equation for x Trat + T (z)-% &gV Lyt =)
and for dcf (2 + 62H) + TH | (z + 63) L (2¥ + 62") L (2t + 627) = 0

Combining the two equations one can find geodesic deviation equation

(D, )?62H = R, u"uf 6P

d d
With the covariant operator D, oxt = —oxt + F“Aiéx)‘
dt YA dT



Effects of a gravitational wave

Influence of Curvature on Particle Trajectories (gravitational tidal forces):

How gravitational tidal forces change trajectories of nearby particles ?

(D;)?S* = R*,_u’ufS°

Vpo
Let the test particles are initially at rest u* = (1,0,0,0)

When a gravitational wave arrives ut = (1,0,0,0) + O(h)

The Riemann tensor is already of order h = we have at the lowest order
) _ 1
R,uOOa o §8anh,u0

The geodesic deviation equation becomes

[ St = hH, S"J




Effects of a gravitational wave
SH = 3ht 57

S3 = 0 for a wave propagating in z° direction = the gravitational wave is
transversally polarised. The particles are only disturbed in directions perpendic-
ular to the wave.

The movement of the particles in the 1-2 plane is then governed by

ibab Sb — —(QQ)ab Sb

o _ —iw(t —2?) a = (%)% = $w°hS

we can consider separately the two cases (1) €19 = 0 and (2) €17 = —eg0 = 0.



Effects of a gravitational wave

. 3
Sl( t) = —%enw e—zwtsl( t) e WX

For e;9 = 0 one has
52() _|_ 11w e—zthQ() W

3

SY(t) = (1 + Leype —w(t = 27)) 1)
S2 1_ le e—iw(t—wg))SQ(O)

‘ fffff fffff ‘ fffff . fffff + polarisation

SY(t) = S1(0) + Leype ~(E = %) 620
S2(t) = S2(0) + Lepge —(E —2%) 510

fffff ++++++ ******

the solution to lowest order (in ¢)

€11 — 0 but €12 — €21 7& 0.



Production Gravitational Waves

we need to include sources

(0) .
7 T (t — |Z — 7,
huw (L, ) :4GN/d3y po (8 — |7 — 4. 9)

At large distances, and when the wavelength is much larger than the size of the
source

AG N
,

Ry (t, T) ~ / &y T (¢, ) r=|7

tir = — (0 -
Tt (t,§) = Tp) (t = 1,9)

The gravitational analogue of the dipole approximation in electrodynamics

In this approximation the leading (1/r)- part of h,,o does not lead to gravitational
waves



Production Gravitational Waves

concentrate on the spatial components

1 — 4G re —
hzk(tax) ~ al /dgy ﬂkt(tay)

T

v

2GN "’Ifet let(t) _ /d3$ pretxixk
r 1k

—

ik (t, ) =~

>

—iQQ(t — 1)

—_— ) 5 e
In case when p(t) ~e WX = hig(t,r) # —2GNQ*QL

an outgoing spherical wave.

dE GN oope it = | Px "N @iy — $0u17)
[ = Q"N (O t)@kJ /

— Q;,;]St . %52'16(@?“675)3:7' .




