Simple Models of Gravitational Collapse

Collapse of a Shell of Radiation

Consider an infinitely thin spherical shell of radiation in an otherwise empty
spacetime.

Minkowski spacetime

ds®> = —dv? + 2dv dr + r2dQ?

Schwarzschild metric (with v = t + r,) has the ingoing Eddington-Finkelstein

form 2m

—f(r)dv* 4 2dv dr + r2dQ¥* |, f(r)=1-— "—

r

ds?

In both metrics, ingoing lightrays are described by lines of constant v.

e the flat Minkowski geometry inside the shell

e and the Schwarzschild metric outside the shell.

The shell moves along the ingoing null trajectory v = vg, as viewed from both
the internal Minkowski geometry and the external Schwarzschild geometry.



Simple Models of Gravitational Collapse

2
ds* = —f(v,7)dv?® + 2dv dr +r%dQ¥* |, f(u,r)=1— mf@(v — )
r
The form of ingoing Vaidya metric:
2 2 2 7002 2m(v)
ds® = —f(v,r)dv® + 2dv dr + r=dQ* , f(v,r)=1— .

m(v) = msO(v — vp)

Einstein equations are satisfied by choosing

T,, = 47;;]\[ TQf(S(v — ) Purely ingoing light




Simple Models of Gravitational Collapse

correct diagram

Incorrect part.of the diagram




Rotating black holes



Kerr metric

2 4 in? 6 )3 °
ds® = — (1 - '”;7“) dt* — 2 Lt dg + = sin® 0dg® + Podr? + p2d6?
p p p A
A(r) =r? = 2mr + a®
p(r,0)? = r? 4+ a®cos* 0
Y(r,0) = (r° + a*)* — A(r)a*sin?

» Two free parameters m and a (rotation parameter), J = Ma.

& This metric is time-independent and axially symmetric, with the two com-
muting Killing vectors £ = 0, n = 0.

& Stationary (but not static) = there is a term g;4, no symmetry t — —t
(More invariantly, this is the statement that the Killing vector t is not
hypersurface-orthogonal)

& It reduces to the Schwarzschild metric for a = 0. Also reduces to the
Minkowski spacetime when m = 0, but in 'weird’ rotating coordinates.

& Electric charge can be added to this solution by the same replacement
m — m — Q?/(2r).



Kerr metric

2 4 in? 6 ) .
ds® = — (1 - ”;7“) dt* — 2 Lt dg + = sin® 0dg® + Podr? + p2d6?
p p p A
A(r) =r? = 2mr + a®
p(r,0)? = r? 4+ a®cos* 0

Y(r,0) = (r° + a*)* — A(r)a*sin?

» A symmetry 0 — 0 — w. Also a symmetry (t,¢) — (—t, —¢), related to
circularity property of the solution. (Running backwards in time negative
spin = running forward in time with positive spin.)

E) N ) NAE@) = &) N ) N () = 0.

& Asymptotically

2 4masin® 6
ds® ~ — (1 — —m> dt? — 0 Tt + dr® + r2 (d62 + sin® 0de?)

(A T



Kerr black hole: ergosphere

2 4 in? 0 )y 2
ds? = — (1 _ ”;”) dt* — L T dg+ = sin® dg? + %er + p2dh?
p p p

A(r) =r? = 2mr + a®
p(r,0)? = r? 4+ a®cos* 0
Y(r,0) = (r° + a*)* — A(r)a*sin?

& Static observers, remaining at fixed values of the spatial coordinates (r, 6, ¢),
with 4-velocity

uOt ~ é‘O{
& A static limit or infinite redshift surface for such observers?

& =gu=0

gi(r,0) =0 <& p?—2mr =1r%+a’cos’ — 2mr = 0

rsi(6) =m+\/m2—a260829



Kerr black hole: ergosphere

® No curvature singularity at » = ry;.

® |t defines the static limit surface for static observers: no static observers
can exist for r < rg

® Also defines a surface of infinite redshift for static observers.
& Killing vector & = 0; becomes null.

® For the Schwarzschild metric, rg; — 2m = 7, reduces to the Schwarzschild
radius.

However this surface is not a horizon



Kerr black hole: ergosphere

Although no static observers can exist for r < ry; this does not by itself
imply that one cannot escape from that region. Stationary observers can
escape with u® ~ &% + QOn®.

& This surface is timelike, it has a spacelike normal.

S(r,0)=r—1rgq(0) =0
Normal vector Ny =0,S: Ny =(0,1,—drg/do,o0)

o ) 1 m?a? sin® 0
Na T =g + g7 (dral0)/d6)" = 2mrg m2 — a2 cos? 6 20
S

Clearly cannot be a horizon



Kerr black hole: inside the ergosphere

» Stationary observers u® ~ £% + Qn®.

* u® is timelike when g4 + Zng -+ Q29¢¢ <0

Q_(r,0) < Q(r,0) < Qy(r,0)

<0 for r > ry

—Ote £ \/92 — g1t 9
0L = ¢ b i Q. < = for r =ry

Yoo > () for r <rgy

# Outside the ergosphere stationary observers can rotate either with or
against the rotation of the black hole. On and inside the ergosphere
a stationary observer only rotate with (i.e. to be dragged along by) the
black hole.

# One can add a small motion in the direction of r or # and see that one can
escape from the inside of the ergosphere, as long as stationary observers
exist.



Kerr black hole: Horizon

& Stationary observers cease to exist when

A
9t2¢—gttg¢¢=A(r)sin29 =0 also gr"“:?
A(T):T2—2m’r‘—|—a2:0 :> ri:mi\/mZ_&2

* We note that re =m+vVm?2—a2<m+vVm2—a2cos?0 = ry(6)

Equality is only at the poles 8 =0, 7
& Hypersurface of constant » with the normal N, ~ 0,r becomes null at

4.
go‘ﬁaar(?@r =0



Kerr black hole: Horizon

» At r = r the stationary observers have the angular velocity

a
2 2
'r++a

Qh — w(r+) —

» The Killing vector corresponding to the stationary observers there is null

En = Eq, =&+ U = (gaﬁgggf) lp=r, =0
& This surface is a Killing horizon and also the event horizon

» Singularity occurs at p* =r? +a%cos?f =0 = r =cosf =0 It is a ring
singularity, 2 + y? = a?, z = 0.



Important surfaces in the Kerr metric

Ring singularity

Ergoregion

-Inner horizon

Event horizon

Static limit

[from d'Inverno's book]



Kerr summary

AXis of rotation

Inner
horizon

Ergosphere

[ from nrumiano]




Killing horizon vs event horizon

¢ Rigidity theoreom (Hawking): The event horizon H of a real analytic, station-
ary, regular, vacuum spacetime is a Killing horizon: 3 a Killing field £ normal

to H which verifies k2 = 0 on H.

& For the outer horizon of the Kerr spacetime, this Killing vector is

a

k=0
t+2M7"_|_

D
& One can define the surface gravity x4 of H as
KMV EY = ki k"

& The surface gravity is constant on H and is related to the Hawking tempera-
ture Ty = ko /2w



Conformal diagram for Kerr spacetime

Conformal diagram for 6 = /2

Conformal diagram for 6 =0
From a talk by Piotr T. Chrusciel



Kerr singularity, extremal black holes, time machines

® For a > M there is no horizon = naked singularity
& Extremal black hole a = M

® Time machine inside Kerr black hole

2 4 in? 6
ds? = — (1 - ”;T) dr* — L 2 d
p p

¥ =(r*+ a2)2 — A(r)a®sin® 0 = (r* + a*) p° + 2mra® sin® 6
Consider p close to 0, i.e. close to the ring singularity.

There is a region (r < 0) where the sign changes.

0/0¢ is timelike. Consider now t = const, r = const, 8 = const, and motion
along ¢—direction = closed timelike curves.

Decreasing ¢ = time machine



Black holes are bald

e (Gravitational collapse...

¢ Black holes eat or expel surrounding matter

e Their stationary phase is characterised by a limited number of charges
e No details about collapse

e Black holes are bald

% No hair theorems/arguments dictate that adding degrees of freedom
lead to trivial (General Relativity) or singular solutions.

» E.g. in the standard scalar-tensor theories BH solutions are GR black

holes with constant scalar.
." settling
down >
M, J, Q)

N
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Example of hairy black hole

BBMB SO|UtiOn Bocharova et al’70, Bekenstein’74

Conformally coupled scalar field:

o) 1 4
g/u/a¢ /F(m—§8 gb(’) ¢—ER¢2>CZ:E

Static spherically symmetric (nontrivial) solution:

2 dr?
ds® = — (1 — T) dt* | d - (d92 + sin? 9ng2)

2
’ (1=
Secondary scalar hair: 3 m
¢ —
4G r—m

NB. The geometry is of that of extremal RN.
The scalar field is unbounded at r=m



Gauss-Bonnet term

1
/ d*z\/=¢ [ PR — §gwaﬂ¢a,,¢ + \oG
Gauss-Bonnet invariant: G = R,oa R — 4R, R* + R?

Horndeski theory with G5 o< In|X| = assumption (iii) is violated.

EoM for the scalar: ¢ = —\G

Source for the scalar: it cannot be trivial in BH background  campbell et al’92
Kanti et al’96

Sotiriou and Zhou’1l3



Solutions in "Galileon theory"

[ LACT = R —n(0¢)? + BG*0,00,¢ — 2A. j

ds® = —h(r)dt* 1 - r2dQ?

¢ = qt + Y(r) Time-dependent scalar !

Asymptotically dS/AdS:

Ae
f=h=1-2_202 @p’:i%m’ Aeff_: _%

r 3




Properties of disformed Kerr in modified gravity

EB, T.Anson, C.Charmousis, M.Hassaine'20

& Ergosphere (static limit): static timelike observers can no longer exist, the Killing vector
[* =(1,0,0,0) becomes null. l.e. g+ =0, or

git =0 =>["“E—M+ \/M2—CL2(ZOS29 )

& Stationary limit. Observers constant (r, ), with a 4-velocity u = 0;+w0d,,. These observers
cease to exist at the surface G11G, — §f¢ = 0, I.e.

IM Da?r sin? 0 B

p*(r, 0) ’

P(r,0) =21 g% — M7y +

The surface is timelike and thus cannot be a horizon.

& Horizon: a null hypersurface of the form r» = R(#). The normal has components
n, = (0,1, —R'(0),0)

The condition n? = 0 yields
4 )

2MDa?Rsin?§
pA(R,0)
\- )

R'(0)?> + P(R,0) = R'(#)> + R*+a* —2MR + 0




Surfaces

stationary

Q limit

ergosphere
horizon

v




