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% Lecture 1: Schwarzschild black holes in General Relativity
% Lecture 2: Rotating black holes
% Lecture 3: Gravitational waves

% Lecture 4: Black holes and gravitational waves, observations



Schwarzschild black holes



General Relativity

» General Relativity is a field theory based on a single metric g,,, (no other
metrics or other fields) <= encodes curvature of space time

® line element:

ds? = G dxt dz”

metric connection
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General Relativity

* Ricci tensor
R = R
[y

1% %%
® Ricci scalar
L s
R=R",

& Action for gravity (Einstein-Hilbert action):
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® Variation with respect to g,, —  Einstein equations:
Gy = 8nGT),
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Vacuum solutions in General Relativity

No matter in spacetime (part of spacetime)
T,=0 —= G, =0

Spherically symmetric solutions

& One can show that for spherically symmetric solutions:
ds® = —Adt® + 2Bdtdr + Cdr® + D (d§” + sin® 0d¢?)
A, B,C, D depend only on t and r.

» Change of coords: D — r?, B — (
ds® = —e Vdt? + eMdr® + r? (d92 + sin? qubz)



Schwarzschild solution

¢ /

—A [ A 1 1

€ T 72 lrz—o

G,, =0 — — v 1\ 1

[13 % <6 P ) Tg—O
A=0

»(3) > A= A1)

. . . . oA 1
» (1) is ODE, and it can be integrated to give e* = 7=

r
g

*()+2) =N+ =0 —A+v=n~h(t), v=—-Xr)+h()

L/
g

2
ds? — —eh® ( _ T—g) dt? 1 1dr — 172 (d6® + sin® dg?)

T

T
I'f)

el d¢2 s d¢2

N
2

[ds2 = —ePt) ( — T—g) dt* ar ~ r (d92 + sin” qubQ)
" g




Schwarzschild solution

Karl Schwarzschild

The solution was found in 1916




Schwarzschild solution

2
ds? = _( —~ T—g) dt” A 1dr — + 7% (df? + sin® 0d¢?)
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& The solution is asymptotically flat, that isat r — 0
ds® = —dt* + dr* + r? (d6” + sin® 0dp°)

& Static, meaning that the Killing vector 0, is hypersurface orthogonal
(There is a coordinate system such that g;, = 0)

Birkhoff's theorem (1923): any spherically symmetric solution of

the vacuum field equations must be (a piece) of the Schwarzschild
solution.



Schwarzschild solution
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& Any spherical perturbation of a black hole is a pure gauge (non-physical)

& For a massive body, there is no effect on the spacetime in case of spheri-
cally symmetric pulsations.
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® ry=2GM, M is the mass of the black hole



Killing vectors

Killing vector (field) reflects a symmetry of the metric
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Compare the new and old metrics in different points of spacetime P and P/,
but with the same values of coordinates y*(P’) = x*(P)

A symmetry of the metric: 9., (%) = g (¥)

The metric does not change along a Killing vector V#: Ly g, =20

r
V.V, +V,V, =0



Schwarzschild solution: singularity?
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ds? — _ ( _ T_g) dt2 - dr -2 (d6? 4 sin 0d¢?)
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& Let's look for singularities, what about » = 2G M7 Check invariants
R = 0 so it tells us nothing about singularities. Also R, = 0.

So it does not look like r = r, = 2G'M is a singularity.
* Radial light geodesics
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Schwarzschild solution: singularity?

Although Eddington (1924) was the first to con-
struct a coordinate system that is nonsingular at
r = 2M, he seems not to have recognized the sig-
nificance of his result. Lemaitre (1933c, especially
p. 82) appears to have been the first to recognize
that the so-called “Schwarzschild singulanty” at
r = 2M is not a singularity. He wrote, “La singu-
larité du champ de Schwarzschild est donc une
singularité fictive, | '

MTW book



Schwarzschild solution: Good coordinates

» Eddington-Finkelstein coordinates
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ds® = — ( — r_g) dv? + 2dvdr + r*dQ?
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* Radial light geodesics
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Schwarzschild solution: Horizon
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» No curvature singularity at r = r, (in Schwarzschild
coordinates it is a coordinate singularity)

*r=ryisa null surface.

& The Killing vector 0; becomes null at this hy-
persurface.

& 0O is null generator of the horizon.

® r =r, is a Killing horizon and also the event
horizon.

The black hole is a region of space-time that is invisible to an outside or asymp-
totic observer. Loosely speaking an event horizon is then the boundary of this
black hole region.

A null hypersurface is a Killing horizon K of a Killing vector field £ if &| is
normal to K



Carter-Penrose (conformal) diagram

Main idea: to understand the causal structure of spacetime, we use conformal
transformation

ds* — d5° = Q(z)*ds*

® The causal nature of a vector field or curve is invariant under conformal
rescalings

» In particular, conformal rescalings preserve the lightcones ds®* = 0 and
thus the causal structure of the space-time encoded in the structure and
behaviour of lightcones.

* In general, timelike or spacelike geodesics are not mapped into each other.
However, the paths that are traced out by null geodesics are mapped into
each other under conformal rescalings.



Carter-Penrose diagram for Minkowski spacetime

ds® = —dt* + dr?® + r*dQ? —o <t<4ooand 0 <r < 4oc
Light coordinates uw=t—r , v=t+r
ds* = —dudv + ((v — u)?/4)dQ? —00<u<v< 0o

| et's introduce new coordinates

u=tanlU , wv=tanV —7m/2< U<V < +7/2

The metric becomes
1

= T (AU dV +sin®(V — U)dQ)

ds?

We remove the prefactor and consider the metric

d5* = (4cos? U cos? V)ds* = —4dU dV + sin?*(V — U)dQ?



Carter-Penrose diagram for Minkowski spacetime

d5* = (4cos? U cos? Vds* = —4dU dV + sin?*(V — U)dQ?

New coordinates (again) T=U+V , R=V-U2>0
~2 2 2 -2 2
ds* = —d1* + dR° + sin” R df) T+ R<nm , 0<R<mT
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Carter-Penrose diagram for Minkowski spacetime

(future timelike infinity): where one asymptotes to when one takes t — +o0o at
fixed r

i~ (past timelike infinity): where one asymptotes to when one takes t — —oo at fixed

r

S

i° (spacelike infinity): where one asymptotes to when one instead takes r — oo at
fixed ¢

T7 (future null infinity): where outgoing radial lightrays asymptote to in the future,

i.e. one takes v — oo at fixed u

T~ (past null infinity): where ingoing radial lightrays asymptote to in the past, i.e.

one takes u — —oo at fixed v



Carter-Penrose diagram for (maximally extended)
Schwarzschild

The future horizon H™ is the boundary of the region from which signals can
escape to future null infinity Z

The horizon H™ is the boundary of (the closure of) the past of future null
infinity.



Carter-Penrose diagram for a collapsing star




