Radiative recoil corrections to the hyperfine splitting of light muonic atoms

Moscow International School of Physics 2020

Dorokhov A.E. (JINR), Martynenko F.A. (Samara University)

Radiative recoil corrections to the hyperfine structure of Sstates of muonic deuterium

1. Radiative recoil corrections to the muon line. 1- muon self-energy, 2vertex, 3- spanning photon contributions

The muon-deuteron interaction amplitude can be presented in the form:

$$\begin{split} M_{direct} &= \frac{-l(Z\alpha)^{-}}{\pi^{2}} \int d^{4}k \big[\overline{u}(q_{1})L_{\mu\nu}u(p_{1}) \big] D_{\mu\omega}(k)D_{\nu\lambda}(k) \times \\ [\varepsilon_{\rho}^{*}(q_{2})\Gamma_{\omega,\rho\beta}(q_{2},p_{2}+k)D_{2,\beta\tau}(p_{2}+k)\Gamma_{\lambda,\tau\alpha}(p_{2}+k,p_{2})\varepsilon_{\alpha}(p_{2}) \big], \\ M_{crossed} &= \frac{-l(Z\alpha)^{2}}{\pi^{2}} \int d^{4}k \big[\overline{u}(q_{1})L_{\mu\nu}u(p_{1}) \big] D_{\mu\lambda}(k)D_{\nu\omega}(k) \times \\ [\varepsilon_{\rho}^{*}(q_{2})\Gamma_{\omega,\rho\beta}(q_{2},p_{2}-k)D_{2,\beta\tau}(p_{2}-k)\Gamma_{\lambda,\tau\alpha}(p_{2}-k,p_{2})\varepsilon_{\alpha}(p_{2}) \big], \end{split}$$

where $p_{1,2}, q_{1,2}$ are 4-momenta of muon and deuteron in initial and final states, k is photon 4-momentum, $\varepsilon_{\alpha}(p_2)$, $\varepsilon_{\rho}(q_2)$ are deuteron polarization vectors of initial and final states, $D_{\mu\omega}$, $D_{\nu\lambda}$ are photon propagators, $D_{2,\beta\tau}(p_2 + k)$ is a deuteron propagator, $\Gamma_{\omega,\rho\beta}(q_2, p_2 + k), \Gamma_{\lambda,\tau\alpha}(p_2 + k, p_2)$ are deuteron-photon vertex operators. They are parametrized by three form factors:

$$\begin{split} \Gamma_{\omega,\rho\beta}(q_2,p_2+k) &= \frac{(2p_2+k)_{\omega}}{2m_2} g_{\rho\beta} F_1(k^2) - \frac{(2p_2+k)_{\omega}}{2m_2} \frac{k_{\rho}k_{\beta}}{2m_2^2} F_2(k^2) \\ &- \left(g_{\rho\gamma} g_{\beta\omega} - g_{\rho\omega} g_{\beta\gamma}\right) \frac{k_{\gamma}}{2m_2} F_3(k^2), \ p_{1,2} \approx q_{1,2} \end{split}$$

Form factors $F_{1,2,3}$ are determined by charge (G_E) , magnetic (G_M) and quadrupole (G_Q) deuteron form factors $(\eta = \frac{k^2}{4m^2})$:

$$G_E = F_1 + \frac{2}{3}\eta[F_1 + (1-\eta)F_2 - F_3], G_M = F_3, G_Q = F_1 + (1-\eta)F_2 - F_3$$

For electromagnetic form factors we use phenomenological parametrization based on electron-deuteron elastic scattering data.

Lepton tensor with taking into account a radiative photon $L_{\mu\nu}$ is determined for each diagram separately. For example, for self-energy diagram:

 $L_{\mu\nu}^{SE} = \frac{\alpha}{4\pi} \int \frac{d^4q}{(2\pi)^4} \gamma_{\mu} \frac{\hat{p}_1 - \hat{k} + m_1}{(p_1 - k)^2 + m_1^2} \gamma_{\bar{k}} \frac{\hat{p}_1 - \hat{k} - \hat{q} + m_1}{(p_1 - k - q)^2 + m_1^2} \gamma_{\bar{k}} \frac{\hat{p}_1 - \hat{k} + m_1}{(p_1 - k)^2 + m_1^2} \gamma_{\nu} D_{\xi\eta}(q)$ For radiative photon we use the Fried-Yennie gauge because it allows us to get the infrared finite result for each diagram separately. Packages FeynCalc and FeynPar in Wolfram Mathematica for $L_{\mu\nu}$ construction are used. They allow to make transformation using Feynman parametrization method. The general structure of $L_{\mu\nu}$ for three types of diagrams is:

$$L_{\mu\nu}^{\Sigma} = -\frac{3\alpha}{4\pi} \int_{0}^{1} (1-x) dx \frac{\gamma^{\mu}(\hat{p}_{1}-\hat{k})\gamma^{\nu}}{m_{1}^{2}-x(m_{1}^{2}+k_{2})+2p_{1}kx}$$

$$L_{\mu\nu}^{\Lambda} = -\frac{\alpha}{4\pi} \int_{0}^{1} dx \int_{0}^{1} dz \frac{\gamma^{\mu}(\hat{p}_{1}-\hat{k}+m_{1})}{(p_{1}-k)^{2}-m_{1}^{2}} \bigg[F_{\nu}^{(1)} + \frac{F_{\nu}^{(2)}}{\Lambda} + \frac{F_{\nu}^{(3)}}{\Lambda^{2}} \bigg]$$

$$L_{\mu\nu}^{\Omega} = -\frac{2\alpha}{4\pi} \int_{0}^{1} x^{2}(1-x) dx \int_{0}^{1} (1-z) dz \bigg[\frac{F_{\mu\nu}^{(1)}}{\Lambda} + \frac{F_{\mu\nu}^{(2)}}{\Lambda^{2}} + \frac{F_{\mu\nu}^{(3)}}{\Lambda^{3}} \bigg]$$

$$\Delta = x^{2}m_{1}^{2} - xz(1-xz)k^{2} + 2kp_{1}xz(1-x)$$

Functions $F_{\nu}^{(i)}$ and $F_{\mu\nu}^{(i)}$ have large structure. They are presented in [1,2]. Our approach to evaluating the muon-proton interaction amplitude is based on inserting of projection operators on the bound states with definite total angular

«Proton Radius Puzzle»

-a disagreement between the value of the proton charge radius r_p obtained from experiments involving muonic hydrogen and those based on electron-proton systems.

Recent Researches

CODATA

(*eh*): $r_p = 0.8775(51) fm$ $(\mu h): r_p = 0.84087(39) fm$ $\begin{array}{ll} r_p &= 0.8335(95) \ fm \\ r_p &= 0.877(13) \ fm \\ r_p &= 0.831(7)_{stat}(12)_{sys} \ fm \end{array} \begin{array}{ll} \mbox{A. Beyer, et al., Science $358, 79-85(202)$} \\ \mbox{A. Beyer, et al., Science $358, 79-85(202)$} \\ \mbox{H. Fleurbaey et al. Phys. Rev. Lett. $120,$} \\ \mbox{W. Xiong et al., Nature $575, 147(2019)$} \\ \mbox{W. Xiong et al., Nature 57

 $r_p = 0.833(10) fm$

momenta
$$F = \frac{1}{2}, \frac{3}{2}$$
. We construct them from wave functions of muon and deuteron:

$$\Pi_{\frac{1}{2}} = [u(p_1)\varepsilon_{\alpha}(p_2)]_{\frac{1}{2}} = \frac{i}{\sqrt{3}}\gamma_5(\gamma_{\alpha} - \nu_{\alpha})\Psi(P),$$

$$\Pi_{\frac{3}{2}} = [u(p_1)\varepsilon_{\alpha}(p_2)]_{\frac{3}{2}} = \Phi_{\alpha}(P),$$

N. Bezginov et al., Science 365, 1007-1012(2019)

A. Antognini et al. [CREMA], Science 339, 417 (2013)

H. Fleurbaey et al. Phys. Rev. Lett. 120, 183001 (2018)

A. Beyer, et al., Science 358, 79-85 (2017)

$$\sum_{\nu} \overline{\Psi}(P)\Psi(P) = \frac{1}{4}(1+\hat{v}), \sum_{\nu} \overline{\Phi_{\rho}}(P)\Phi_{\alpha}(P) = -\frac{1}{8}(1+\hat{v}) \left[g_{\rho\alpha} - \frac{1}{3}\gamma_{\rho}\gamma_{\alpha} - \frac{2}{3}v_{\rho}v_{\alpha} + \frac{1}{3}(v_{\rho}\gamma_{\alpha} - v_{\alpha}\gamma_{\rho})\right]$$
Using projecting operators allows us to present numerator of amplitude as a trace
$$T_{SE}^{F=\frac{1}{2}} = \frac{1}{48}Tr\{(1+\hat{v})(\gamma_{\rho} - v_{\rho})\gamma_{5}(1+\hat{v})\gamma_{\mu}(\hat{p}_{1} - \hat{k})\gamma_{\nu}(1+\hat{v})\gamma_{5}(\gamma_{\alpha} - v_{\alpha})\}$$

$$T_{SE}^{F=\frac{3}{2}} = -\frac{1}{48}Tr\{(1+\hat{v})(\gamma_{\rho} - v_{\rho})\gamma_{5}(1+\hat{v})\gamma_{\mu}(\hat{p}_{1} - \hat{k})\gamma_{\nu}(1+\hat{v})\gamma_{5}(\gamma_{\alpha} - v_{\alpha})\}$$

 $T_{SE}^{2} = \frac{1}{32} Tr \left\{ (1+\vartheta) \left[g_{\rho\alpha} - \frac{1}{3} \gamma_{\rho} \gamma_{\alpha} - \frac{2}{3} v_{\rho} v_{\alpha} + \frac{1}{3} (v_{\rho} \gamma_{\alpha} - v_{\alpha} \gamma_{\rho}) \right] (1+\vartheta) \gamma_{\mu} (\hat{p}_{1} - \hat{k}) \gamma_{\nu} (1+\vartheta) \right\}$ We utilize package FORM for trace calculating and Lorentz indexes collapsing. The result of these calculations for muon self-energy diagram is:

$$T_{SE}^{hfs} = F_3^2 (-3k_0^4 + 3k^2k_0^2 - 3xk_0^4 + 3xk^2k_0^2 - 3xk^2k_0^4 + 3xk^4k_0^2) + F_1F_3(-12k_0^4 + 12k^4 - 12xk_0^4 + 24xk^2k_0^2 - 12xk^4 - 12xk^2k_0^2 + 12xk^6)$$

That result is presented taking into account that we keep only first order of nuclear finite size corrections $\frac{m_1}{m_2} \left(\left(\frac{m_1}{m_2} \right)^2 = 0 \right)$. The results for two other diagrams have the same but more complex form.

After that we transform muon-deuteron interaction amplitude in Euclidean space and obtain contribution to the HFS in integral form (where we introduce the dimensionless variable $k \rightarrow m_1 k$):

$$\Delta E_{SE}^{hfs} = -\frac{3\mu^3 \alpha (Z\alpha)^5}{\pi^3 n^3 m_1^2} \int_0^{-\infty} \frac{kdk}{k^4} \int_0^{\pi} Sin\phi^2 d\phi \frac{1}{k^2 + 4\left(\frac{m_1}{m_2}\right)^{-2} Cos\phi^2} \times \int_0^1 (1-x) dx \frac{1}{(1-x+xk^2)^2 + 4x^2k^2 Cos\phi^2} (T_{SE}^{hfs}),$$

Where in T_{SF}^{hfs} we also go to Euclidean space and introduce dimensionless variable. Interaction operators for two other diagrams have the same but more complex form. It is possible to integrate analytically over ϕ in the case of all three diagrams. The integrals for self-energy diagram have the form:

$$\begin{split} & I_{1,2,3} = \int_{0}^{\pi} Sin\phi^{2} \frac{1}{k^{2} + 4\left(\frac{m_{1}}{m_{2}}\right)^{-2} \cos\phi^{2}} \frac{1}{(1 - x + xk^{2})^{2} + 4x^{2}k^{2}Cos\phi^{2}} \times (1, y^{2}, y^{4}) \\ & I_{1} = \frac{\mu_{1}\pi(-\sqrt{4 + k^{2}\mu_{1}^{-2}} (-1 + k^{2})\sqrt{4 + k^{2}\mu_{1}^{-2}} x + k\mu_{1}\sqrt{1 + x(-2 + x + k^{4}x + 2k^{2}(1 + x))})}{4k(1 + (-1 + k^{2})x(-1 + x + k^{2}(-1 + \mu_{1})x)(1 + (-1 + k^{2}(1 + \mu_{1}))x)}, \\ & \frac{\mu^{2}\pi\left(-1 + (-1 + 2k^{2} + k^{4}(-1 + \mu_{1}) - k^{2}\mu_{1}\sqrt{4 + k^{2}\mu_{1}^{-2}}x^{2} + \sqrt{1 + 2(-1 + k^{2})x^{4}} + (-1 + k^{2})x^{2} + \sqrt{1 + 2(-1 + k^{2})x^{4}}, \frac{1}{k^{2}(-1 + k^{2})x^{2}}\right)}{16k^{2}x^{2}(-1 - 2(-1 + k^{2})x^{4} + (-1 + k^{2})x^{2})} \end{split}$$

$$\mu_{1}^{2}\pi(-2+2k^{2}\mu_{1}^{2}+k^{4}\mu_{1}^{4}-k^{3}\mu_{1}^{3}\sqrt{4+k^{2}\mu_{1}^{2}}+\frac{(1+(-1+k^{2})x)^{2}(-1+x-k^{2}x+\frac{2k^{4}x^{4}}{(1+(-1+k^{2})x)^{2}}-\frac{2k^{4}x^{4}}{1+(-1+k^{2})x)}+\sqrt{1+2(-1+k^{2})x+(1+k^{2})^{2}x^{2}})}\frac{k^{4}x^{4}}{64(-1-2(-1+k^{2})x+(-1+2k^{2}+k^{4}(-1+\mu_{1}))x^{2})}$$

Integration over x and k after that is performed numerically using Monte-Carlo method in Wolfram Mathematica.

1. Radiative recoil diagrams contribution to the hyperfine splitting of Sstates of muonic deuterium

Diagram	Radiative nonrecoil correction	Radiative nonrecoil + recoil
		correction
Self-energy	0.0014 meV	0.0014, meV
Vertex	-0.0042 meV	-0.0038, meV
Jellyfish	-0.0011 meV	-0.0018, meV

Obtained contribution improves previous results and must be taken into account for comparison with more precise experimental data.

[1] R.N. Faustov, A.P. Martynenko, G.A. Martynenko, V.V. Sorokin, Phys. Lett. B 733 354-358 (2014)

[2] R.N. Faustov, A.P. Martynenko, F.A. Martynenko, V.V. Sorokin, Phys. Lett. B775 79-83 (2017)

[3] R.N. Faustov, A.P. Martynenko, F.A. Martynenko, V.V. Sorokin, Phys. Part. Nucl. 48 no.5, 819-821 (2017)