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Neutrino oscillations

Evgeny Akhmedov Moscow International School of Physics 2020 Voronovo, March 3-9, 2020 – p. 2



Neutrinos can oscillate !

A periodic change of neutrino flavour (identity):

νe → νµ → νe → νµ → νe ...

Happens without any external influence!

Dr. Jekyll / Mr. Hyde kind of story

Neutrinos have two-sided (or even 3-sided) personality !

P (νe → νµ;L) = sin2 2θ · sin2
(

∆m2

4p L
)

Hints of oscillations of solar neutrinos seen since the 1960s

First unambiguous evidence – oscillations of atmospheric

neutrinos (The Super-Kamiokande Collaboration, 1998)
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A bit of history...

Idea of neutrino oscillations: First put forward by Pontecorvo
in 1957. Suggested possibility of ν ↔ ν̄ oscillations by
analogy with K0K̄0 oscillations.
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B. Pontecorvo S. Sakata Z. Maki M. Nakagawa
1913 - 1993 1911 – 1970 1929 – 2005 1932 – 2001
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Oscillations discovered experimentally !
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Oscillations: a well known QM phenomenon

E 2

Ψ

Ψ
E

1

2

1

Ψ1(t) = e−iE1 tΨ1(0)

Ψ2(t) = e−iE2 tΨ2(0)

Ψ(0) = aΨ1(0) + bΨ2(0) (|a|2 + |b|2 = 1) ; ⇒
Ψ(t) = a e−i E1 tΨ1(0) + b e−i E2 tΨ2(0)

Probability to remain in the same state |Ψ(0)〉 after time t:

♦ Psurv = |〈Ψ(0)|Ψ(t)〉|2 =
∣

∣|a|2 e−i E1 t + |b|2 e−i E2 t
∣

∣

2

= 1− 4|a|2|b|2 sin2[(E2 − E1) t/2]
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Neutrino oscillations: theory
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Leptonic mixing

For mν 6= 0 weak eigenstate neutrinos νe, νµ, ντ do not

coincide with mass eigenstate neutrinos ν1, ν2, ν3

Diagonalization of leptonic mass matrices:

e′L → VL eL , ν ′
L → UL νL . . . ⇒

−Lw+m =
g√
2
(ēLγ

µ V †
LUL νL)W

−
µ + diag. mass terms + h.c.

Leptonic mixing matrix: U = V †
LUL

♦ ναL =
∑

i

Uαi νiL ⇒ |ναL〉 =
∑

i

U∗
αi |νiL〉

(α = e , µ , τ, i = 1 , 2 , 3)
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Master formula for ν oscillations

The standard formula for the oscillation probability of relativistic or

quasi-degenerate in mass neutrinos in vacuum:

♦ P (να → νβ;L) =

∣

∣

∣

∣

∑

i Uβi e
−i

∆m2
ij

2p
L U∗

αi

∣

∣

∣

∣

2

(~ = c = 1)

Problem: prove that the RHS does not depend on the index j.

Oscillation disappear when either

U = 1, i.e. Uαi = δαi (no mixing) or

∆m2
ij = 0 (massless or mass-degenerate neutrinos).
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How is it usually derived?

Assume at time t = 0 and coordinate x = 0 a flavour eigenstate

|να〉 is produced:

|ν(0, 0)〉 = |νfl
α〉 =

∑

i

U∗
αi |νmass

i 〉

After time t at the position x, for plane-wave particles:

|ν(t, ~x)〉 =
∑

i

U∗
αi e

−ipix|νmass
i 〉

Mass eigenstates pick up the phase factors e−iφi with

φi ≡ pi x = Et − ~p ~x

P (να → νβ) =
∣

∣〈νfl
β |ν(t, x)〉

∣

∣

2
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How is it usually derived?

Consider ~x || ~p ⇒ ~p~x = px (p = |~p|, x = |~x|)
Phase differences between different mass eigenstates:

∆φ = ∆E · t − ∆p · x

Shortcuts to the standard formula

1. Assume the emitted neutrino state has a well defined

momentum (same momentum prescription) ⇒ ∆p = 0.

For ultra-relativistic neutrinos Ei =
√

p2 +m2
i ≃ p+

m2
i

2p
⇒

∆E ≃ m2
2 −m2

1

2E
≡ ∆m2

2E
; t ≈ x (~ = c = 1)

⇒ The standard formula is obtained
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How is it usually derived?

2. Assume the emitted neutrino state has a well defined

energy (same energy prescription) ⇒ ∆E = 0.

∆φ = ∆E · t − ∆p · x ⇒ − ∆p · x

For ultra-relativistic neutrinos pi =
√

E2 −m2
i ≃ E − m2

i

2p
⇒

−∆p ≡ p1 − p2 ≈ ∆m2

2E
;

⇒ The standard formula is obtained

Stand. phase ⇒ (losc)ik = 4πE
∆m2

ik
≃ 2.5 m E (MeV)

∆m2
ik eV2
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Same E and same p approaches
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Same E and same p approaches

Very simple and transparent

Allow one to quickly arrive at the desired result

Trouble: they are both wrong

Evgeny Akhmedov Moscow International School of Physics 2020 Voronovo, March 3-9, 2020 – p. 13



Kinematic constraints

Same momentum and same energy assumptions: contradict kinematics!

Pion decay at rest (π+ → µ+ + νµ, π− → µ− + ν̄µ):

For decay with emission of a massive neutrino of mass mi:

E2
i =

m2
π

4

(

1−
m2

µ

m2
π

)2

+
m2

i

2

(

1−
m2

µ

m2
π

)

+
m4

i

4m2
π

p2i =
m2

π

4

(

1−
m2

µ

m2
π

)2

− m2
i

2

(

1 +
m2

µ

m2
π

)

+
m4

i

4m2
π

For massless neutrinos: Ei = pi = E ≡ mπ

2

(

1− m2

µ

m2
π

)

≃ 30 MeV

To first order in m2
i :

Ei ≃ E + ξ
m2

i

2E
, pi ≃ E − (1− ξ)

m2
i

2E
, ξ =

1

2

(

1−
m2

µ

m2
π

)

≈ 0.2

Evgeny Akhmedov Moscow International School of Physics 2020 Voronovo, March 3-9, 2020 – p. 14



Kinematic constraints

Same momentum or same energy would require

ξ = 1 or ξ = 0 – not the case!

Also: would violate Lorentz invariance of the oscillation

probability

How can wrong assumptions lead to the correct oscillation

formula ?
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Problems with the plane-wave approach

Same momentum ⇒ oscillation probabilities depend only

on time. Leads to a paradoxical result – no need for a far

detector ! “Time-to-space conversion” (??) – assumes

neutrinos to be point-like particles (notion opposite to plane

waves).

Same energy – oscillation probabilities depend only on

coordinate. Does not explain how neutrinos are produced

and detected at certain times. Correspponds to a stationary

situation.

Plane wave approach ⇔ exact energy-momentum conservation.

Neutrino energy and momentum are fully determined by those of

external particles ⇒ only one mass eigenstate can be emitted!
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♦ Consistent approaches:
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QM wave packet approach – neutrinos described by wave packets rather

than by plane waves



♦ Consistent approaches:

QM wave packet approach – neutrinos described by wave packets rather

than by plane waves

QFT approach: neutrino production and detection explicitly taken into

account. Neutrinos are intermediate particles described by propagators

ν

Pi(q)

Pf (k)

Di(q
′)

Df (k′)
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QM wave packet approach

In QM propagating particles are described by wave packets!

– Finite extensions in space and time.

Plane waves: the wave function at time t = 0 Ψ~p0
(~x) = ei~p0~x
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1.5
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x
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Wave packets

Wave packets: superpositions of plane waves with momenta in an interval of

width σp around mom. p0

σx σp ≥ 1/2 – QM uncertainty relation

W. packet centered at ~x0 = 0 at time t = 0:

Ψ(~x; ~p0, σ~p) =

∫

d3p

(2π)3
f(~p− ~p0) e

i~p ~x

Gaussian mom. space w. packet:

0
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p

σxσp = 1/2 – minimum uncertainty packet
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Propagating wave packets

Include time dependence:

Ψ(~x, t) =

∫

d3p

(2π)3
f(~p− ~p0) e

i~p~x−iE(p)t

Example: Gaussian wave packets

Momentum-space distribution:

f(~p− ~p0) =
1

(2πσ2
p)

3/4
exp

{

− (~p− ~p0)
2

4σ2
p

}

Coordinate-space wave packet for νi (neglecting spreading):

♦ Ψi(~x, t) = ei~p0~x−iEi(p0)t
1

(2πσ2
x)

3/4
exp

{

− (~x− ~vgit)
2

4σ2
x

}

, σ2
x = 1/(4σ2

p)
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QM wave packet approach

The evolved produced state:

|νflα(~x, t)〉 =
∑

i

U∗αi |νmass
i (~x, t)〉 =

∑

i

U∗αiΨ
P
i (~x, t)|νmass

i 〉

Transition amplitude:

Aαβ(T, ~L) = 〈νflβ |νflα(T, ~L)〉 =
∑

i

U∗αiUβi Ai(T, ~L)

Strongly suppressed unless |~L−~vgiT | . σx. E.g., for Gaussian wave packets:

Ai(T, ~L) ∝ exp

[

− (~L− ~vgiT )
2

4σ2
x

]

, σ2
x ≡ σ2

xP + σ2
xD
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Phase difference

Oscillations are due to phase differences of different mass eigenstates:

∆φ = ∆E · T − ∆p · L (Ei =
√

p2i +m2
i )

For relativistic or quasi-degenerate neutrinos: ∆E ≪ E, ∆p ≪ p ⇒

∆E =
∂E

∂p
∆p+

∂E

∂m2
∆m2 = vg ∆p +

1

2E
∆m2

∆φ = (vg ∆p+
1

2E
∆m2) T − ∆p · L

= − (L − vg T )∆p +
∆m2

2E
T

In the center of wave packet (L − vg T ) = 0 ! In general, |L − vg T | . σx;

if σx∆p ≪ 1 , (∆p ≪ σp, σx ≪ losc ) ⇒ |L − vg T |∆p ≪ 1 ⇒
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∆φ =
∆m2

2E
T , L ≃ vgT ≃ T

– the result of the “same momentum” approach recovered!

Now instead of expressing ∆E through ∆p and ∆m2 express ∆p through

∆E and ∆m2:

♦ ∆φ = − 1

vg
(L − vg T )∆E +

∆m2

2p
L ⇒ ∆m2

2p
L

– the result of the “same energy” approach recovered!

The reasons why wrong assumptions give the correct result:

Neutrinos are relativistic or quasi-degenerate with ∆E ≪ E, ∆p ≪ p

The size of the neutrino wave packet is small compared to the oscillation

length: σx ≪ losc (more precisely: energy uncertainty σE ≫ ∆E)
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When are neutrino oscillations observable?

Keyword: Coherence

Neutrino flavour eigenstates νe, νµ and ντ are coherent superpositions of

mass eigenstates ν1, ν2 and ν3 ⇒ oscillations are only observable if

neutrino production and detection are coherent

coherence is not (irreversibly) lost during neutrino propagation.

Possible decoherence at production (detection): If by accurate E and p

measurements one can tell (through E =
√

p2 +m2) which mass eigenstate

is emitted, the coherence is lost and oscillations disappear!

Full analogy with electron interference in double slit experiments: if one can

establish which slit the detected electron has passed through, the interference

fringes are washed out.

♦ Decoherence is equivalent to averaging neutrino oscillations out.
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Oscillations: coherence of different νi

Usual assumption: the produced and detected neutrinos are flavour

eigenstates

♦ |ναL〉 =
∑

i

U∗αi |νiL〉 (α = e , µ , τ, i = 1 , 2 , 3)

m

Intrinsic QM neutrino energy and momentum uncertainties (σE and σp) related

to space-time localization of the production and detection processes play a

crucial role.
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Coherence vs. decoherence at ν production

E and p differences of neutrino mass eigenstates composing a flavour state:

∆E ≡ ∆Eik =
√

p2i +m2
i −

√

p2k +m2
k, ∆p = pi − pk .

Production coherence condition (barring some cancellations): neutrino energy

and momentum uncertainties must be sufficiently large to accommodate

differing Ei and pi:

∆E ≪ σE , ∆p ≪ σp .

How are the oscillations destroyed when σE and σp are too small? Small σp

means large uncertainty of the coordinate of neutrino production point. When

it becomes larger than losc oscillations get washed out (Kayser 1981).
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Configuration - space picture

Oscillation phase acquired over the distance x and time t:

φosc = ∆E · t−∆p · x .
Fluctuation of φosc due to uncertainty in 4-coordinate of neutrino production:

δφosc = ∆E · δt−∆p · δx ,

δt and δx limited by the duration of the neutrino production process σt and its

spatial extension σX : δt . σt, |δx| . σX .
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Configuration - space picture

Oscillation phase acquired over the distance x and time t:

φosc = ∆E · t−∆p · x .
Fluctuation of φosc due to uncertainty in 4-coordinate of neutrino production:

δφosc = ∆E · δt−∆p · δx ,

δt and δx limited by the duration of the neutrino production process σt and its

spatial extension σX : δt . σt, |δx| . σX .

For oscillations to be observable δφosc must be small – otherwise oscillations

will be washed out upon averaging over (tP , xP ) ⇒

|∆E · δt−∆p · δx| ≪ 1

Barring accidental cancellations: ∆E · δt ≪ 1, ∆p · δx ≪ 1. From

δt . σt ∼ σ−1E , δx . σX ∼ σ−1p ⇒

♦ ∆E ≪ σE , ∆p ≪ σp .
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Different neutrino mass eigenstates are produced (detected) coherently and

hence neutrino oscillations may be observable only if the oscillation phase

acquired over the space-time extension of the production (detection) region is

much smaller than unity.
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Propagation decoherence

Another source of decoherence: wave packet separation due to the difference

of group velocities ∆v of different mass eigenstates.

If coherence is lost: Flavour transition can still occur, but in a non-oscillatory

way. E.g. for π → µνi decay with a subsequent detection of νi with the

emission of e:

P ∝
∑

i

Pprod(µ νi)Pdet(e νi) ∝
∑

i

|Uµi|2|Uei|2

– the same result as for averaged oscillations.
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Wave packet separation

Wave packets representing different mass eigenstate components have

different group velocities vgi ⇒ after time tcoh (coherence time) they

separate ⇒ Neutrinos stop oscillating! (Only averaged effect observable).

Coherence time and length:

∆v · tcoh ≃ σx ; lcoh ≃ vtcoh

∆v =
pi
Ei

− pk
Ek

≃ ∆m2

2E2

lcoh ≃ v
∆v

σx = 2E2

∆m2 vσx

The standard formula for Posc is obtained when the decoherence effects

are negligible.
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A manifestation of neutrino coherence –

Non-observation of neutrino oscillations at short distances.

Expected: 365.2± 23.7

Background: 17.8± 7.3

Observed: 258
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A manifestation of neutrino coherence

Even non-observation of neutrino oscillations at distances L ≪ losc is a

consequence of and an evidence for coherence of neutrino emission and

detection! Two-flavour example (e.g. for νe emission and detection):

Aprod/det(ν1) ∼ cos θ , Aprod/det(ν2) ∼ sin θ ⇒

A(νe → νe) =
∑

i=1,2

Aprod(νi)Adet(νi) = cos2 θ + e−i∆φ sin2 θ

Phase difference ∆φ vanishes at short L ⇒

P (νe → νe) = (cos2 θ + sin2 θ)2 = 1

If ν1 and ν2 were emitted and absorbed incoherently ⇒ one would have

to sum probabilities rather than amplitudes:

P (νe → νe) ∼
∑

i=1,2

|Aprod(νi)|2|Adet(νi)|2 ∼ cos4 θ + sin4 θ < 1
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For Gaussian WPs:

Giunti, Kim & Lee, Phys. Lett. B274 (1992) 87:

Pαβ(L,E) =
∑

i,k

UαiU
∗
βiU

∗
αkUβke

−i(∆m2
ik/2p)L e−[L/(lcoh)ik]

2−[∆E2
ik/8σ

2
E ]

(lcoh)ik = 2
√
2

vg
|∆vg|

σx = 2
√
2

2E2

|∆m2
ik|

σx ; σx = 1/2σp = (1/2)(vg/σE)

1

σ2
E

=
1

σ2
Eprod

+
1

σ2
Edet

∆Eik = ξ
∆m2

ik

2E

♦ Overall normalization obtained by imposing unitarity condition!
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Are coherence constraints compatible?

Observability conditions for ν oscillations:

Coherence of ν production and detection

Coherence of ν propagation

Both conditions put upper limits on neutrino mass squared differences ∆m2 :

(1) ∆Ejk ∼
∆m2

jk

2E
≪ σE ; (2)

∆m2
jk

2E2
L ≪ σx ≃ vg/σE

But: The constraints on σE work in opposite directions:

(1) ∆Ejk ∼
∆m2

jk

2E
≪ σE ≪ 2E2

∆m2
jk

vg
L

(2)

Are they compatible? – Yes, if LHS ≪ RHS ⇒

2π
L

losc
≪ vg

∆vg
(≫ 1) – fulfilled in all cases of practical interest

Evgeny Akhmedov Moscow International School of Physics 2020 Voronovo, March 3-9, 2020 – p. 34



Are coherence conditions satisfied?

The coherence propagation condition: satisfied very well for all but

astrophysical and cosmological neutrinos (solar, SN, relic ν’s ...)



Are coherence conditions satisfied?

The coherence propagation condition: satisfied very well for all but

astrophysical and cosmological neutrinos (solar, SN, relic ν’s ...)

Coherent production/detection: usually satisfied extremely well due to the

tininess of neutrino mass



Are coherence conditions satisfied?

The coherence propagation condition: satisfied very well for all but

astrophysical and cosmological neutrinos (solar, SN, relic ν’s ...)

Coherent production/detection: usually satisfied extremely well due to the

tininess of neutrino mass

But: Is not automatically guaranteed in the case of “light” sterile neutrinos!

msterile ∼ eV − keV − MeV scale ⇒ heavy compared to the “usual”

(active) neutrinos



Are coherence conditions satisfied?

The coherence propagation condition: satisfied very well for all but

astrophysical and cosmological neutrinos (solar, SN, relic ν’s ...)

Coherent production/detection: usually satisfied extremely well due to the

tininess of neutrino mass

But: Is not automatically guaranteed in the case of “light” sterile neutrinos!

msterile ∼ eV − keV − MeV scale ⇒ heavy compared to the “usual”

(active) neutrinos

Sterile neutrinos: hints from SBL accelerator experiments (LSND, MiniBooNE),

reactor neutrino anomaly, keV sterile neutrinos, pulsar kicks, leptogenesis via

ν oscillations, SN r-process nucleosynthesis, unconventional contributions to

2β0ν decay ...



Are coherence conditions satisfied?

The coherence propagation condition: satisfied very well for all but

astrophysical and cosmological neutrinos (solar, SN, relic ν’s ...)

Coherent production/detection: usually satisfied extremely well due to the

tininess of neutrino mass

But: Is not automatically guaranteed in the case of “light” sterile neutrinos!

msterile ∼ eV − keV − MeV scale ⇒ heavy compared to the “usual”

(active) neutrinos

Sterile neutrinos: hints from SBL accelerator experiments (LSND, MiniBooNE),

reactor neutrino anomaly, keV sterile neutrinos, pulsar kicks, leptogenesis via

ν oscillations, SN r-process nucleosynthesis, unconventional contributions to

2β0ν decay ...

Production/detection coherence has to be re-checked – important

implications for some neutrino experiments!
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Neutrino oscillations: Coherence at macroscopic distances –

L > 10,000 km in atmospheric neutrino experiments !
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Universal oscillation formula?

The complete process: production – propagation – detection: factorization

Γab = ja(E)P prop
ab (L,E)σb(E)

with a universal P prop
ab (L,E) is only possible when all 3 processes are

independent

In general not true, and production – propagation – detection should be

considered as a single inseparable process!

To get the standard formula one assumes for the emitted and absorbed states

|νfla 〉 =
∑

i

U∗ai |νmass
i 〉

The weights of the mass eigenstates are just U∗ai – do not depend on the

masses of νi ⇒ only true when the phase space volumes at production

and detection do not depend on the mass of νi.
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Universal oscillation formula?

This is only true if the charact. energy E at production (and detection) is large

compared to all mi (relativistic neutrinos), or compared to all |mi −mk|
(quasi-degenerate neutrinos).

⇒ Neutrino oscillations can be described by a universal probability only

when neutrinos are relativistic or quasi-degenerate

Also: degree of coherence of the propagating neutrino state depends on the

coherence of the production and detection processes

⇒ The standard formula for the oscillation probability is only valid when

all decoherence effects are negligible !
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Oscillation probability in vacuum

The standard formula for osc. probability is stubbornly robust.

Validity conditions:

Neutrinos are ultra-relativistic or quasi-degenerate in mass

Coherence conditions for neutrino production, propagation

and detection are satisfied.

Gives also the correct result in the case of strong coherence

violation (complete averaging regime).

Gives only order of magnitude estimate when decoherence

parameters are of order one.

But: Conditions for partial decoherence are difficult to realize

They may still be realized if relatively heavy sterile neutrinos exist
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Phenomenology of neutrino oscillations
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An important example: 2-flavour case

|νe〉 = cos θ |ν1〉+ sin θ |ν2〉
|νµ〉 = − sin θ |ν1〉+ cos θ |ν2〉

⇒

U =





cos θ sin θ

− sin θ cos θ



 ≡





c s

−s c





***

♦ Ptr = sin2 2θ sin2

(

∆m2

4p
L

)

⋄ Problem: Derive this formula from the general expression for Pαβ.

⋄ Problem: Write this formula in the usual units, reinstating all factors of ~

and c. Find its classical and non-relativistic limits.
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Oscillation amplitude: sin2 2θ. Oscillation phase:

∆m2

4p
L = π

L

losc
, losc ≡

4πp

∆m2
≃ 2.48m

p (MeV)

∆m2 (eV2)
.

For large oscillation phase ⇒ averaging regime (due to finite E-resolution of

detectors and/or finite size of ν source/detector):

Ptr = sin2 2θ sin2
(

∆m2

4p
L

)

→ 1

2
sin2 2θ
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2f evolution equation in vacuum

For relativistic point-like ν’s (x ≃ t) the evolution equation in the flavour basis:

i
d

dt





νe

νµ



 = Hfl





νe

νµ



 =



U





E1 0

0 E2



U †









νe

νµ





E ≃ p + m2

2E ⇒

Hfl ≃



U





p+
m2

1

2E 0

0 p+
m2

2

2E



U †



 =⇒



U





−∆m2

21

4E 0

0
∆m2

21

4E



U †





N.B.: A term prop. to unit matrix can always be added to/subtracted from Hfl. Problem: prove this!

2-flavor evolution equation:

♦ i
d

dt





νe

νµ



 =





−∆m2

4E cos 2θ ∆m2

4E sin 2θ

∆m2

4E sin 2θ ∆m2

4E cos 2θ









νe

νµ





⋄ Problem: find Ptr by solving the evolution equation with the initial contition (1, 0)T .
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Oscillation parameters as characteristics of Hfl

For a 2× 2 real symmetric matrix




a b

b c





the angle of rotation that diagonalizes it:

tan 2θ =
2b

c− a
.

Eigenvalues:

λ1,2 =
a+ c

2
∓
√

(c− a)2

4
+ b2 .

<————————————>

Mixing angle θ: the angle of rotation that diagonalizes eff. Hamiltonian Hfl.

Eigenvalues of Hfl: E1,2 = ±∆m2

4E .

Oscillation length: losc = 2π
|E2−E1|

vg = 4πp
∆m2
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3f neutrino mixing and oscillations

Evgeny Akhmedov Moscow International School of Physics 2020 Voronovo, March 3-9, 2020 – p. 45



General case of n flavours – parameter counting

(n× n) unitary mixing matrix Ũ ⇒ n2 real parameters:





n

2



 =
n(n− 1)

2
mixing angles ,

n(n+ 1)

2
phases

For leptonic mixing matrix n phases can be absorbed into re-defenition of the

phases of LH charged fields: eαL → eiφαeαL (e.g., 1st line of Ũ can be made

real). This can be compensated in the mass term of charged leptons by

rephasing eαR → eiφαeαR, so that ēαLeαR = inv.

Similarly, for Dirac neutrinos phases of one column can be fixed by absorbing

n− 1 phases into a redefinition of νiL (RH neutrino fields can be rephased

analogously, so that ν̄iLνiR = inv.) ⇒ In Dirac ν case

n+ (n− 1) = 2n− 1 phases are unphysical – can be rotated away by

redefining charged lepton and neutrino fields.

N.B.: Kinetic terms of eL, eR and νL, νR are also invariant w.r.t. rephasing.!
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Physical phases

Number of physical phases:

n(n+ 1)

2
− (2n− 1) =

(n− 1)(n− 2)

2
.

Phys. phases responsible for CP violation! ⇒ No Dirac-type CPV for n < 3.

In Majorana case:

Lm ∝ νTLCνL + h.c.

Rephasing of νL is not possible (cannot be compensated in Lm)

Only n phases can be removed from Ũ (by redefinition of eαL fields) ⇒
In addition to Dirac-type phases there are (n− 1) physical Majorana-type

CP-violating phases.
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Majorana phases do not affect oscillations

Majorana-type phases can be factored out in the mixing matrix:

Ũ = UK

U contains Dirac-type phases, K – Majorana-type phases σi:

K = diag(1 , eiσ1 , ... , eiσn−1)

Neutrino evolution equation: i d
dt ν = Heff ν

Heff = UK















E1

E2

.

.















K†U † = U















E1

E2

.

.















U †

Does not depend on the matrix of Majorana ✟✟CP phases K ⇒
ν oscillations are insensitive to Majorana phases. Also true for osc. in matter.
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3f oscillation parameters

Three neutrino species (νe, νµ, ντ ) – linear superpositions of three mass

eigenstates (ν1, ν2, ν3). Mixing matrix U – 3× 3 unitary matrix. Depends on

3 mixing angles and one Dirac-type ✟✟CP phase δCP.

Experiment: 2 mixing angles large (in the standard parameterization –

θ12 and θ23), one (θ13) is relatively small.

Three neutrinos species – 2 independent mass squared differences,

e.g. ∆m2
21 and ∆m2

31.

∆m2
21 ≪ ∆m2

31
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What do we know about neutrino parameters?

From atmsopheric and LBL accelerator neutrino experiments:

♦ ∆m2
31 ≃ 2.5× 10−3 eV2 , θ23 ∼ 45◦

From solar neutrino experiments and KamLAND:

♦ ∆m2
21 ≃ 7.5× 10−5 eV2 , θ12 ≃ 33◦

From T2K + Double Chooz, Daya Bay and Reno reactor neutrino experiments:

♦ θ13 ≃ 9◦ (previosly from Chooz . 12◦)

CP-violating phase δCP practically unconstrained at the moment.
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Leptonic mixing and 3f osc. in vacuum

Relation between flavour and mass eigenstates:

να =
3
∑

i=1

Uαi νi

να – fields of flavour eigenstates, νi – of mass eigenstates.

3f mixing matrix:

U =









Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3
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Leptonic mixing and 3f osc. in vacuum

Relation btween flavour and mass eigenstates:

|να〉 =
3
∑

i=1

U∗αi |νi〉

Oscillation probability in vacuum:

P (να → νβ ;L) =

∣

∣

∣

∣

∣

3
∑

i=1

Uβi e
−i

∆m2
i1

2p
L U∗αi

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

[

U e−i
∆m2

2p
L U †

]

βα

∣

∣

∣

∣

2

3f mixing matrix in the standard parameterization (cij = cos θij , sij = sin θij):

U =









1 0 0

0 c23 s23

0 −s23 c23

















c13 0 s13e
−iδCP

0 1 0

−s13e
iδCP 0 c13

















c12 s12 0

−s12 c12 0

0 0 1









= O23 (Γδ O13 Γ
†
δ) O12 , Γδ ≡ diag(1 , 1 , eiδCP)
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3f neutrino mixing

U =









c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s13s23e
iδCP c12c23 − s12s13s23e

iδCP c13s23

s12s23 − c12s13c23e
iδCP −c12s23 − s12s13c23e

iδCP c13c23









m2

0

solar~7×10−5eV2

atmospheric

~2×10−3eV2

atmospheric

~2×10−3eV2

m1
2

m2
2

m3
2

m2

0

m2
2

m1
2

m3
2

νe

νµ
ντ

? ?

solar~7×10−5eV2
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✟✟✟✟
CP and �

�T in ν osc. in vacuum

νa → νb oscillation probability:

♦ P (να, t0 → νβ ; t) =

∣

∣

∣

∣

∣

∑

i

Uβi e
−i

∆m2
i1

2E
(t−t0) U∗αi

∣

∣

∣

∣

∣

2

• CP: να,β ↔ ν̄α,β ⇒ Uαi → U∗αi ({δCP} → −{δCP})

• T: t →← t0 ⇔ να ↔ νβ

⇒ Uαi → U∗αi ({δCP} → −{δCP})

T-reversed oscillations (“backwards in time”) ⇔ oscillations between

interchanged initial and final flavours

⋄ ✟✟CP and �T – absent in 2f case, pure N ≥ 3f effects!

⋄ No ✟✟CP and �T for survival probabilities (β = α).
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CP and T violation in vacuum – contd.

• CPT: να,β ↔ ν̄α,β & t →← t0 (να ↔ νβ)

⋄ P (να → νβ) → P (ν̄β → ν̄α)

The standard formula for Pαβ in vacuum is CPT invariant!

✟✟CP ⇔ �T – consequence of CPT

Measures of ✟✟CP and �T – probability differences:

∆PCP
αβ ≡ P (να → νβ)− P (ν̄α → ν̄β)

∆PT
αβ ≡ P (να → νβ)− P (νβ → να)

From CPT:

⋄ ∆PCP
αβ = ∆PT

αβ ; ∆PCP
αα = 0
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3f case

One ✟✟CP Dirac-type phase δCP (Majorana phases do not affect ν

oscillations!) ⇒ one ✟✟CP and �T observable:

⋄ ∆PCP
eµ = ∆PCP

µτ = ∆PCP
τe ≡ ∆P

∆P = − 4s12 c12 s13 c
2
13 s23 c23 sin δCP

×
[

sin

(

∆m2
12

2E
L

)

+ sin

(

∆m2
23

2E
L

)

+ sin

(

∆m2
31

2E
L

)]

Vanishes when

At least one ∆m2
ij = 0

At least one θij = 0 or 90◦

δCP = 0 or 180◦

In the averaging regime

In the limit L → 0 (as L3)

Very difficult to

observe!
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Small parameters

Approximate formulas for probabilities can be obtained using

expansions in small parameters:

(1)
∆m2

⊙
∆m2

atm

=
∆m2

21

∆m2
31

∼ 1/30

(2) |Ue3| = | sin θ13| ∼ 0.16

In the limits ∆m2
21 = 0 or Ue3 = 0 – probabilities take an

effective 2f form.

(N.B.: P (να → νβ) = P (νβ → να))
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Backup slides
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∣
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∣
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∣

∣

∣

∣

2



Neutrino mixing schemes

I. Dirac case

−Lw+m =
g√
2
(ēLγ
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∣
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Neutrino mixing schemes

I. Dirac case

−Lw+m =
g√
2
(ēLγ

µ V †LUL νL)W
−
µ +

n
∑

α=1

mlαēαeα +
n
∑

i=1

miν̄iνi + h.c.

♦ V †LUL ≡ U ; ναL =
n
∑

i=1

Uαi νiL ⇒ |ναL〉 =
n
∑

i=1

U∗αi |νiL〉

(α = e , µ , τ, i = 1 , 2 , 3

♦ P (να → νβ ;L) =

∣

∣

∣

∣

∣

n
∑

i=1

Uβi e
−i

∆m2
ij

2p
L
U∗
αi

∣

∣

∣

∣

∣

2

II. Majorana neutrinos

−Lw+m =
g√
2
(ēLγ

µ V †
LUL νL)W

−
µ +

n
∑

α=1

mlαēαeα −
n
∑

i=1

miν
T
iLC−1νiL + h.c.

ναL =
n
∑

i=1

Uαi νiL ⇒ |ναL〉 =
n
∑

i=1

U∗
αi |νiL〉

Osc. probability: the same expression
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Neutrino mixing schemes
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Neutrino mixing schemes

III. Dirac + Majorana mass term (n LH and k RH neutrinos)

−Lw+m =
g√
2
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III. Dirac + Majorana mass term (n LH and k RH neutrinos)
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2
(ēLγ

µ V †LUL νL)W
−
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∑

i=1

UaiχiL , UTMU = Md ,

χi = χiL + (χiL)
c , i = 1, . . . , n+ k ,

Lm =
1

2
nT
L C−1MnL+h.c. =

1

2

n+k
∑

i

MdiχiLC−1χiL+h.c. = − 1

2

n+k
∑

i

Mdiχ̄iχi.

Index a can take n+ k values; denote collectively the first n of them with α

and the last k with σ ⇒
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D + M mass term – contd.
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∣
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Sterile - sterile neutrino oscillations:

P (νcσL → νcρL;L) =

∣

∣
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∣

∣

n+k
∑

i=1

Uρi e
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ij
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∣

∣

∣
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2f oscillations: physical ranges of parameters

|νe〉 = cos θ |ν1〉+ sin θ |ν2〉
|νµ〉 = − sin θ |ν1〉+ cos θ |ν2〉

In general, θ ∈ [0, 2π]. But: there are transformations that leave ν mixing

formulas unchanged:

θ → θ + π, |ν1〉 → −|ν1〉, |ν2〉 → −|ν2〉 ⇒ θ ∈ [−π
2 ,

π
2 ]

θ → −θ, |ν2〉 → −|ν2〉, |νµ〉 → −|νµ〉 ⇒ θ ∈ [0, π
2 ]

θ → π
2 − θ, |ν1〉 ↔ |ν2〉, |νµ〉 → −|νµ〉 ⇒ ∆m2 → −∆m2

One can always choose ∆m2 > 0 by choosing appropriately θ within [0, π
2 ].

For vacuum oscillations: Ptr, Psurv depend only on sin2 2θ ⇒ one can

choose θ to be in [0, π
4 ]. Not true for oscillations in matter!

Similar considerations in the 3f case: all θij ∈ [0, π
2 ]; δCP ∈ [0, 2π].
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The paradox of σE and σp

QM uncertainty relations: σp is related to the spatial localization of the

production (detection) process, while σE to its time scale ⇒
independent quantities.

On the other hand: Neutrinos propagating macroscopic distances are on the

mass shell. For on-shell mass eigenstates E2 = p2 +m2
i means

EσE = pσp

How can this be understood?

The solution: At production, neutrinos are not on the mass shell. They go on

shell only after they propagate x ∼ (a few)× De Broglie wavelengths. After

that their energy and momentum get related by E2 = p2 +m2
i ⇒ the

larger uncertainty shrinks towards the smaller one to satisfy EσE = pσp.

On-shell relation between E and p allows to determine the less certain of

the two through the more certain one, reducing the error of the latter.
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What determines the length of ν w. packets?

The length of ν w. packets: σx ∼ 1/σp. For propagating on-shell neutrinos:

σp ≃ min{σprod
p , (E/p)σprod

E } = min{σprod
p , (1/vg)σ

prod
E }

Which uncertainty is smaller at production, σprod
p or σprod

E ?
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What determines the length of ν w. packets?

The length of ν w. packets: σx ∼ 1/σp. For propagating on-shell neutrinos:

σp ≃ min{σprod
p , (E/p)σprod

E } = min{σprod
p , (1/vg)σ

prod
E }

Which uncertainty is smaller at production, σprod
p or σprod

E ?

Consider neutrino production in decays of an unstable particle localized in a

box of size LS . Time between two collisions with the walls of the box: TS .

If TS < τ (τ – lifetime of the parent unstable particle) ⇒
σE ≃ T−1S (collisional broadening). Mom. uncertainty: σp ≃ L−1S .

But: LS = vSTS ⇒ σE < σp (a consequence of vS < 1)

If TS > τ (quasi-free parent particle) ⇒ σE ≃ τ−1 = Γ.

σp ≃ [(p/E)τ ]−1 ≃ [(p/E)σE ]
−1, i.e. σE ≃ (p/E)σp < σp.
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The length of ν w. packets – contd.

In both cases σprod
E < σprod

p ⇐ also when ν′s are produced in collisions.

=⇒ σp eff ≃ σE

vg
, σx ≃ vg

σE

In the stationary limit (σE → 0) one has σp eff → 0 even though σp is finite!

Therefore σx → ∞ and so the coherence length lcoh → ∞
– a well known result.
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Longitudinal vs. transversal w.p. dispersion

Spreading of the wave packets: consequence of the fact that the there is a

spread of momenta inside of the wave packets and of the p-dependence of the

group velocity.

vispr ≃ ∂vi
∂pj

σj
p =

1

E
(δij − vivj)σ

j
p =

1

E
[σi

p − vi(~v ~σp)]

This gives

v⊥spr. =
σp

E
, v||spr. =

σp

E
(1− v2) =

σp

E

m2

E2

ttransv ∼ E/σ2
p, tlong. ∼ E3/σ2

pm
2.
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The wave packet approach

In quantum theory propagating particles are described by wave packets!

– Finite extensions in space and time.

Plane waves: the wave function at time t = 0 Ψ~p0
(~x) = ei~p0~x

–1.5

–1

–0.5

0

0.5

1

1.5

–4 –2 2 4

x

Wave packets: superpositions of plane waves with momenta in an interval of

width σp around mom. p0 ⇒ constructive interference in a spatial interval

of width σx around some point x0 and destructive interference outside it.

σx σp ≥ 1/2 – QM uncertainty relation
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Wave packets

W. packet centered at ~x0 = 0 at time t = 0:

Ψ(~x; ~p0, σ~p) =

∫

d3p

(2π)3/2
f(~p− ~p0) e

i~p ~x

Rectangular mom. space w. packet:

f

pp

2σp

0
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0.5
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x

Gaussian mom. space w. packet:
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σxσp = 1/2 – minimum uncertainty packet
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Propagating wave packets

Include time dependence:

Ψ(~x, t) =

∫

d3p

(2π)3/2
f(~p− ~p0) e

i~p~x−iE(p)t

Expand E(p) =
√

p2 +m2 near p = p0:

E(p) = E(p0) +
∂E(p)

∂~p

∣

∣

∣

∣

~p0

(~p− ~p0) +
1

2

∂2E(p)

∂~p2

∣

∣

∣

∣

~p0

(~p− ~p0)
2 + . . .

~vg =
∂E(p)

∂~p
=

~p

E
, α =

∂2E(p)

∂~p2
=

m2

E2

Ψ(~x, t) ≃ ei~p0~x−iE(p0)t
∫

d3p1
(2π)3/2

f(~p1) e
i~p1(~x−~vgt) (α → 0)

Center of the wave packet: ~x− ~vgt = 0
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QM wave packet approach

The evolved produced state:

|νflα(~x, t)〉 =
∑

i

U∗αi |νmass
i (~x, t)〉 =

∑

i

U∗αiΨ
S
i (~x, t)|νmass

i 〉

The coordinate-space wave function of the ith mass eigenstate (w. packet):

ΨS
i (~x, t) =

∫

d3p

(2π)3
fS
i (~p) e

i~p~x−iEi(p)t

Momentum distribution function fS
i (~p): sharp maximum at ~p = ~P (width of the

peak σpP ≪ P ).

Ei(p) = Ei(P ) +
∂Ei(p)

∂~p

∣

∣

∣

∣

~P

(~p− ~P ) +
1

2

∂2Ei(p)

∂~p2

∣

∣

∣

∣

~p0

(~p− ~P )2 + . . .

~vi =
∂Ei(p)

∂~p
=

~p

Ei
, α ≡ ∂2Ei(p)

∂~p2
=

m2
i

E2
i
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Evolved neutrino state

ΨS
i (~x, t) ≃ e−iEi(P )t+i ~P~x gSi (~x− ~vit) (α → 0)

gSi (~x− ~vit) ≡
∫

d3p1

(2π)3 f
S
i (~p1) e

i~p1(~x−~vgt)

Center of the wave packet: ~x− ~vit = 0. Spatial length: σxP ∼ 1/σpP

(gSi decreases quickly for |~x− ~vit| & σxP ).

Detected state (centered at ~x = ~L):

|νflβ(~x)〉 =
∑

k

U∗βk Ψ
D
k (~x)|νmass

i 〉

The coordinate-space wave function of the ith mass eigenstate (w. packet):

ΨD
k (~x) =

∫

d3p

(2π)3
fD
k (~p) ei~p(~x−

~L)
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Oscillation probability

Transition amplitude:

Aαβ(T, ~L) = 〈νflβ |νflα(T, ~L)〉 =
∑

i

U∗αiUβi Ai(T, ~L)

Ai(T, ~L) =

∫

d3p

(2π)3
fS
i (~p) f

D∗
i (~p) e−iEi(p)T+i~p~L

Strongly suppressed unless |~L− ~viT | . σx. E.g., for Gaussian wave packets:

Ai(T, ~L) ∝ exp

[

− (~L− ~viT )
2

4σ2
x

]

, σ2
x ≡ σ2

xP + σ2
xD

Oscillation probability:

♦ P (να → νβ ;T, ~L) = |Aαβ |2 =
∑

i,k

U∗αiUβiUαkU
∗
βk Ai(T, ~L)A∗k(T, ~L)
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Oscillation probability

Neutrino emission and detection times are not measured (or not accurately

measured) in most experiments ⇒ integration over T :

P (να → νβ ;L) =

∫

dT P (να → νβ ;T, L) =
∑

i,k

U∗αiUβiUαkU
∗
βk e

−i
∆m2

ik
2P̄

L Ĩik
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Oscillation probability

Neutrino emission and detection times are not measured (or not accurately

measured) in most experiments ⇒ integration over T :

P (να → νβ ;L) =

∫

dT P (να → νβ ;T, L) =
∑

i,k

U∗αiUβiUαkU
∗
βk e

−i
∆m2

ik
2P̄

L Ĩik

Ĩik = N

∫

dq

2π
fS
i (rkq −∆Eik/2v + Pi)f

D∗
i (rkq −∆Eik/2v + Pi)

×fS∗
k (riq +∆Eik/2v + Pk)f

D
k (riq +∆Eik/2v + Pk) e

i∆v
v

qL

Here: v ≡ vi+vk

2 , ∆v ≡ vk − vi , ri,k ≡ vi,k

v , N ≡ 1/[2Ei(P )2Ek(P )v]

For (∆v/v)σpL ≪ 1 (i.e. L ≪ lcoh = (v/∆v)σx) Ĩik is approximately

independent of L; in the opposite case Ĩik is strongly suppressed

Ĩik is also strongly suppressed unless ∆Eik/v ≪ σp, i.e. ∆Eik ≪ σE

– coherent production/detection condition
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Oscillations and QM uncertainty relations

Neutrino oscillations – a QM interference phenomenon, owe their existence

to QM uncertainty relations

Neutrino energy and momentum are characterized by uncertainties σE and

σp related to the spatial localization and time scale of the production and

detection processes. These uncertainties

allow the emitted/absorbed neutrino state to be a coherent superposition

of different mass eigenstates

determine the size of the neutrino wave packets ⇒ govern

decoherence due to wave packet separation

σE – the effective energy uncertainty, dominated by the smaller one between

the energy uncertainties at production and detection. Similarly for σp.
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The normalization prescription

Oscillation probability calculated in QM w. packet approach is not

automatically normalized ! Can be normalized “by hand” by imposing the

unitarity condition:
∑

β

Pαβ(L) = 1 .

This gives

∫

dT |Ai(L, T )|2 = 1 ⇒ Fii = N

∫

dp

2πv
|fS

i (p)|2 |fD
i (p)|2 = 1

– important for proving Lorentz invariance of the oscillation probability.

Depends on the overlap of fS
i (p) and fS

i (p) ⇒ no independent

normalization of the produced and detected neutrino wave function would do!

In QFT approach the correctly normalized Pαβ(L) is automatically obtained

and the meaning of the normalization procedure adopted in the w. packet

approach clarified
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Shortcomings of the QM w. packet approach

Neutrino wave packet postulated rather than derived, widths estimated

Production and detection processes are not considered

Inadequate normalization procedure. Normalization “by hand” is

unavoidable.

Advantage: simplicity
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Lorentz invariance of oscillation probability

1. “Paradox” of neutrino w. packet length

For neutrino production in decays of unstable particles at rest (e.g. π → µνµ):

σE ≃ τ−1 = Γπ , σx ≃ vg
σE

≃ vg
Γπ

(= vgτ)
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Lorentz invariance of oscillation probability

1. “Paradox” of neutrino w. packet length

For neutrino production in decays of unstable particles at rest (e.g. π → µνµ):

σE ≃ τ−1 = Γπ , σx ≃ vg
σE

≃ vg
Γπ

(= vgτ)

For decay in flight: Γ′π = (mπ/Eπ)Γπ. One might expect

σ′x ≃ Eπ

mπ
σx > σx .

On the other hand, if the decaying pion is boosted in the direction of the

neutrino momentum, the neutrino w. packet should be Lorentz-contracted !

The solution: pion decay takes finite time. During the decay time the pion

moves over distance l = uτ ′ (“chases” the neutrino if u > 0).

σ′x ≃ v′g/Γ
′ − l = v′gτ

′ − uτ ′ = (v′g − u)γuτ =
vgτ

γu(1 + vgu)
,

[the relativ. law of addition of velocities: v′g = (vg + u)/(1 + vgu)].
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Lorentz invariance issues – contd.

That is

σ′x =
σx

γu(1 + vgu)

For relativistic neutrinos vg ≈ v′g ≈ 1 ⇒

σ′x = σx

√

1− u

1 + u

⇒ when the pion is boosted in the direction of neutrino emission (u > 0)

the neutrino wave packet gets contracted; when it is boosted in the opposite

direction (u < 0) – the wave packet gets dilated.
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Lorentz invariance issues – contd.

The oscillation probability must be Lorentz invariant ! But: L. invariance is not

obvious in QM w. packet approach which (unlike QFT) is not manifestly

Lorentz covariant.

How can we see Lorentz invariance of the standard formula for the oscillation

probability ? Pab depends on L/p (contains factors exp[−i
∆m2

ik

2p L]). Is L/p

Lorentz invariant? Lorentz transformations:

L′ = γu(L+ ut) , t′ = γu(t+ uL) ,

E′ = γu(E + up) , p′ = γu(p+ uE) .

The stand. osc. formula results when (i) production and detection and

(ii) propagation are coherent; for neutrinos from conventional sources (i)

implies σx ≪ losc. ⇒ one can consider neutrinos pointlike and set

L = vgt. ⇒ L′ = γuL(1 + u/vg). On the other hand: vg = p/E

⇒ p′ = γup(1 + u/vg).

⇒ L′/p′ = L/p

Evgeny Akhmedov Moscow International School of Physics 2020 Voronovo, March 3-9, 2020 – p. 82



Lorentz invariance issues – contd.

A more general argument (applies also to Mössbauer neutrinos which are not

pointlike): Consider the phase difference

♦ ∆φ = − 1

vg
(L − vg t)∆E +

∆m2

2p
L

– a Lorentz invariant quantity, though the two terms are in not in general

separately Lorentz invariant.

But: If the 1st term is negligible in all Lorentz frames, the second term is

Lorentz invariant by itself ⇒ L/p is Lorentz invariant.

The 1st term can be neglected when the production/detection coherence

conditions are satisfied. In particular, it vanishes in the limit of pointlike

neutrinos L = vgt. N.B.:

L′ − v′gt
′ = γu

[

(L+ ut)− vg + u

1 + vgu
(t+ uL)

]

=
L− vgt

γu(1 + vgu)
,

i.e. the condition L = vgt is Lorentz invariant. MB neutrinos: ∆E ≃ 0.
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Lorentz invariance issues – contd.

The oscillation probability must be Lorentz invariant even when the coherence

conditions are not satisfied !

Lorentz invariance is enforced by the normalization condition.

Pab(L) =
∑

i,k

UaiU
∗
biU
∗
akUbk Iik(L) , where

Iik(L) ≡
∫

dT Ai(L, T )A∗k(L, T )e−i∆φik

From the norm. cond.
∫

dT |Ai(L, T )|2 = 1 ⇒

|Ai|2dt = inv. ⇒ |Ai||Ak|dt = inv. ⇒ AiA∗kdT = inv.

The phase difference ∆φik = ∆EikT −∆pikL is also Lorentz invariant ⇒
so is Iik(L), and consequently Pab(L).
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Coherence and Lorentz invariance

Consider coherent production conditions ∆E ≪ σE , ∆p ≪ σp for ν born in π±

decays in the rest frame of ν2 (EA, 1703.08169):

|∆E′|
σ′E

≃ ∆m2

2m2

γu
Γπ

≃ ∆m2

2EΓπ
γ2
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|∆p′|
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≃ ∆m2

2m2
vg2
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≃ ∆m2

2EΓπ
γ2
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Consider coherent production conditions ∆E ≪ σE , ∆p ≪ σp for ν born in π±

decays in the rest frame of ν2 (EA, 1703.08169):

|∆E′|
σ′E

≃ ∆m2

2m2

γu
Γπ

≃ ∆m2

2EΓπ
γ2
u ,

|∆p′|
σ′pmin

≃ ∆m2

2m2
vg2

γu
Γπ

≃ ∆m2

2EΓπ
γ2
u

Lorentz factor γu = E/m2 ≫ 1 ⇒ the conditions ∆E′ ≪ σ′E , ∆p′ ≪ σ′p can

be violated for small enough m2. Moreover, for non-rel. neutrinos quite

generally ∆E ∼ Ē & σE !

Resolution: the conditions ∆E ≪ σE , ∆p ≪ σp are not Lorentz invarint. They

follow form the Lorentz-inv. coherent production condition

|∆E · δt−∆p · δx| ≪ 1

only assuming that the two terms on the LHS do not (approximately) cancel

each other and are separately small.
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In reality: Lorentz transformations with u = −vg2 ≃ −1 give
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i.e. δt′ ≃ −δx′. Similarly, ∆E ≃ −∆p ⇒
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In reality: Lorentz transformations with u = −vg2 ≃ −1 give

δt′ = γu(δt+ uδx) ≃ γu(δt− δx) , δx′ = γu(δx+ uδt) ≃ γu(δx− δt) ,

i.e. δt′ ≃ −δx′. Similarly, ∆E ≃ −∆p ⇒

In the rest frame of ν2 the two terms in δφ′osc approximately cancel each other:

δφ′osc = ∆E′ · δt′ −∆p′ · δx′ ≃ ∆E′ · (δt′ + δx′) ≃ 0 .

– no enhancement of δφ′osc actually occurs!

More accurate calculation (taking into account the small deviation of u = −vg2

from −1):

δφ′osc = δφosc ≪ 1.

Conditions ∆E ≪ σE , ∆p ≪ σp are valid only in the frames where the neutrino

source is at rest or is slowly moving. Should be used with caution! Cannot be

automatically extrapolated from one Lorentz frame to another.
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