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Neutrino oscillations




A periodic change of neutrino flavour (identity):
Ve = Vy —> Ve — Vy — Ve ...

Happens without any external influence!
Dr. Jekyll / Mr. Hyde kind of story
Neutrinos have two-sided (or even 3-sided) personality !

P(v. — v,; L) = sin” 20 - sin” <A4—"Z2L)

Hints of oscillations of solar neutrinos seen since the 1960s
First unambiguous evidence — oscillations of atmospheric
neutrinos (The Super-Kamiokande Collaboration, 1998)
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A bit of history...

ldea of neutrino oscillations: First put forward by Pontecorvo
in 1957. Suggested possibility of v <+ v oscillations by
analogy with KYK° oscillations.

Flavour transitions (“virtual transmutations”) first considered
by Maki, Nakagawa and Sakata in 1962.
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Uy (t) =e 210w (0)

Us(t) = e " P21 Wy (0)

U(0) =a¥i(0)+bTs(0) (la]*+[p]* =1); =
U(t) =ae P10 (0) + be t E21 Wy (0)

Probability to remain in the same state |¥(0)) after time ¢:
<> Psurv — <\D(O)‘\Ij(t)>|2 = ||a‘2 e_iElt _I_ ‘b|2 e—iEzt 2

=1— 4|a|2|b|281n2[(E2 — E1)t/2]




Neutrino oscillations: theory




For m, # 0 weak eigenstate neutrinos v, v/, v, do not
coincide with mass eigenstate neutrinos vy, 19, /3

Diagonalization of leptonic mass matrices:

€,L—>VL€L, V}/—)ULVL... -
—Lowim = %(éyy“ VLTUL vp) W, + diag. mass terms + h.c.

Leptonic mixing matrix: U = VU,

<> Val, = ZUai Vir, — |VozL Z ‘V’LL
7

(v = e, u, T, i =1,2,3)




The standard formula for the oscillation probability of relativistic or
quasi-degenerate in mass neutrinos in vacuum:

A 2

2
m=.
YT,
lr*
%p al

O P(vy — vg; L) = ‘ZZ Us, e’

(h=c=1)
Problem: prove that the RHS does not depend on the index ;.

Oscillation disappear when either
s U=1, ie. U, =9, (NOmMixing) or

r) Amfj = 0 (massless or mass-degenerate neutrinos).




Assume at time ¢ = 0 and coordinate x = 0 a flavour eigenstate
lv,) IS produced:

lv(0,0)) = |V Z Za

After time t at the position z, for plane—wave particles:

E —ip;T

Mass eigenstates pick up the phase factors e~ with

mass>

¢i = pixv = Bt — p¥

P(vg = vg) = |(Aw(t, )]




Consider || = pf=px (p = [pl, x = |7

Phase differences between different mass eigenstates:
Ap = AE-t — Ap-x

Shortcuts to the standard formula

1. Assume the emitted neutrino state has a well defined
momentum (same momentum prescription) = Ap = 0.

m;
2p

For ultra-relativistic neutrinos E; = /p2+m? ~p+ =

2 2 2
AR o~ M2—mi Am*

~ p— :1
3o Yo t~ux (h=c )

= The standard formula is obtained
ewewAkmesoy  MosowhomaionalSchoolofPysis2020  Voronow,Mach39,200 —p11




2. Assume the emitted neutrino state has a well defined
energy (same energy prescription) = AFE = 0.

Ap = AE-t — Ap-x = — Ap-x

For ultra-relativistic neutrinos p;, = /E? —m; ~E - 55 =

Am? .
2F

—Ap = p1 —p2 &

= The standard formula is obtained

Stand. phase = | (losc)it = 73 =~ 2.5m AE(l;de\\f/>2
ik miy ©







Very simple and transparent




Very simple and transparent
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Very simple and transparent
Allow one to quickly arrive at the desired result

Trouble: they are both wrong




Same momentum and same energy assumptions: contradict kinematics!
Pion decay atrest (7" — u* +v,, 7 = u= +0,):
For decay with emission of a massive neutrino of mass m;:

2
CT U me) T U w2 ) T ame
m2 m2 ’ m2 ’ITL2 m4
p; = = |1-—=5] - |{1+% )+
4 m2 2 m2 4m?2

For massless neutrinos:
To first order in m?:

/i/ .

2

m; m,% 1 m?
B~ B+¢t,  pi~ BE-(1-9 £=—< ;




Same momentum or same energy would require
£ =1 or & = 0 — notthe case!

Also: would violate Lorentz invariance of the oscillation
probability

How can wrong assumptions lead to the correct oscillation
formula ?




Problems with the plane-wave approach

» Same momentum = oscillation probabilities depend only
on time. Leads to a paradoxical result — no need for a far
detector! “Time-to-space conversion”(??) — assumes
neutrinos to be point-like particles (notion opposite to plane
waves).

s Same energy — oscillation probabilities depend only on
coordinate. Does not explain how neutrinos are produced
and detected at certain times. Correspponds to a stationary
situation.

Plane wave approach < exact energy-momentum conservation.
Neutrino energy and momentum are fully determined by those of
external particles = only one mass eigenstate can be emitted!

Evgeny Akhmedov Moscow International School of Physics 2020 Voronovo, March 3-9,2020 -—p.16
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¢ Consistent approaches:

» QM wave packet approach — neutrinos described by wave packets rather
than by plane waves

# QFT approach: neutrino production and detection explicitly taken into
account. Neutrinos are intermediate particles described by propagators

Py (k) Dy (k")

P;i(q) D;(q")




In QM propagating particles are described by wave packets!
— Finite extensions in space and time.

Plane waves: the wave function attime t =0 U5 (Z) = 0%

1.57




Wave packets: superpositions of plane waves with momenta in an interval of
width o, around mom. py

or0p > 1/2 — QM uncertainty relation

W. packet centered at 7y =0 attime ¢ = 0:

o d’p S o\ ipE
\Ij(xa Po, O-ﬁ) — (27_‘_)3 f(p _pO) €

Gaussian mom. space w. packet:
4 -EVV-VVVU [l ‘ Al VT3 4

049

039

029
D4

0.1 u
—{].61

LARERE T R D R - A
p

o,0p = 1/2 — minimum uncertainty packet




Include time dependence:

T(F 1) — d’p S S\ _ipE—iE(p)t
(33, ) - (27_‘_)3 f(p pO)e

Example: Gaussian wave packets

Momentum-space distribution:

Coordinate-space wave packet for v; (neglecting spreading):

1

\Ijz' = t — ’iﬁof—iEi(po)t
© (% 1) ‘ (2702

(f_ "7git)2 2 2
)3/4 eXp {_ 40_327 Y O-x — ]‘/(40-]))




The evolved produced state:
7t > _ Z U;z |V;nass Z U* \IJP ;nass>

Transition amplitude:

«Aaﬁ(Tal——:) — <VB|V T L Z UB’L )

Strongly suppressed unless \E — 14T S 0,. E.Q., for Gaussian wave packets:

—

A;(T,L) x exp |— U§p+U§D

, o




Oscillations are due to phase differences of different mass eigenstates:

Ap =AE-T — Ap-L (B = \/p? +m)
For relativistic or quasi-degenerate neutrinos: AF < FE, Ap<p =

OF OF 1
AE — —A —A 2 p— A _A 2
op D+ 2 m Vg Ap + o F m

1
Ap = (v, Ap+ ﬁAfnﬂ)T — Ap- L

Am?
2F

T

— (L — v,T)Ap +

In the center of wave packet (L — v,T) =0! Ingeneral, |L — v,T| S 04;

if o, Ap <1, (Ap Loy, 0 Llose) = L — v, TIAp<1l =




Am?
2F
— the result of the “same momentum” approach recovered!

Ap =

T, L ~ v, T ~T
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— the result of the “same momentum” approach recovered!

Ap = T, L ~ v, T ~T

Now instead of expressing AE through Ap and Am? express Ap through
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1 Am? Am?

= — —(L — v,T)AE L
< A vy (L vy T) + % = 2




Am?
2F
— the result of the “same momentum” approach recovered!
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= — — — AFE L
& Ag o (L — v, T) —- 2 = 7
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Am?
2F
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1 Am? Am?
O Ap = — — — TAE L =
@ o (L — v, T) + % >
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Am?
2F
— the result of the “same momentum” approach recovered!

AP = T, L ~ v, T ~T

Now instead of expressing AE through Ap and Am? express Ap through
AE and Am?:

1 Am? Am?
6 Ap = ——(L —v,T)AE + ——L = Ly
Vg 2p 2p

— the result of the “same energy” approach recovered!

The reasons why wrong assumptions give the correct result:

# Neutrinos are relativistic or quasi-degenerate with AE < E, Ap < p

# The size of the neutrino wave packet is small compared to the oscillation
length: o, < l,sc (More precisely: energy uncertainty op > AFE)




Keyword: Coherence

Neutrino flavour eigenstates v., v, and v, are coherent superpositions of
mass eigenstates 11, /9 and 3 = oscillations are only observable if

# neutrino production and detection are coherent

# coherence is not (irreversibly) lost during neutrino propagation.

Possible decoherence at production (detection): If by accurate £ and p
measurements one can tell (through E = /p? 4+ m?2) which mass eigenstate
Is emitted, the coherence is lost and oscillations disappear!

Full analogy with electron interference in double slit experiments: if one can
establish which slit the detected electron has passed through, the interference
fringes are washed out.

¢ Decoherence is equivalent to averaging neutrino oscillations out.




Usual assumption: the produced and detected neutrinos are flavour
eigenstates

O ar) Z vir) (0 =e,p, 7, i =1,2,3)
)

oscillations

production

region detection

region

Intrinsic QM neutrino energy and momentum uncertainties (cz and o,,) related
to space-time localization of the production and detection processes play a
crucial role.




FE and p differences of neutrino mass eigenstates composing a flavour state:

AEEAEz-k:\/p%er?—\/pieri, Ap = pi — D -

Production coherence condition (barring some cancellations): neutrino energy
and momentum uncertainties must be sufficiently large to accommodate
differing E; and p;:

AF < o, Ap L oy .

How are the oscillations destroyed when o and o, are too small? Small o,
means large uncertainty of the coordinate of neutrino production point. When
it becomes larger than [,,. oscillations get washed out (Kayser 1981).




Oscillation phase acquired over the distance = and time ¢:
Gose = AE -t —Ap-x.
Fluctuation of ¢,. due to uncertainty in 4-coordinate of neutrino production:
0pose = AE -0t — Ap - bz,

ot and dz limited by the duration of the neutrino production process o; and its
spatial extension ox: 0t < oy, |0z| S ox.
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ot and dz limited by the duration of the neutrino production process o; and its
spatial extension ox: 0t < oy, |0z| S ox.

For oscillations to be observable §¢,,. must be small — otherwise oscillations
will be washed out upon averaging over (tp, xp) =

AFE -6t — Ap - dx| < 1




Oscillation phase acquired over the distance = and time ¢:
Gose = AE -t —Ap-x.
Fluctuation of ¢,. due to uncertainty in 4-coordinate of neutrino production:
d0posc = AE -0t — Ap - bz,

ot and dz limited by the duration of the neutrino production process o; and its
spatial extension ox: 0t < oy, |0z| S ox.

For oscillations to be observable §¢,,. must be small — otherwise oscillations
will be washed out upon averaging over (tp, xp) =

AFE -6t — Ap - dx| < 1

Barring accidental cancellations: AFE -0t <1, Ap-dx < 1. From

1

ot Sop~og, 5:1350erap_1 =

<> AE<<O'E, Ap<<(7p.




Different neutrino mass eigenstates are produced (detected) coherently and
hence neutrino oscillations may be observable only if the oscillation phase
acquired over the space-time extension of the production (detection) region is

much smaller than unity.




Another source of decoherence: wave packet separation due to the difference
of group velocities Av of different mass eigenstates.

If coherence is lost: Flavour transition can still occur, but in a non-oscillatory
way. E.g. for m# — uvy; decay with a subsequent detection of v; with the
emission of e:

P x ZPprod(:UJV’i)Pdet(eyi) X ZlUMi|2|Uei|2

— the same result as for averaged oscillations.




Wave packets representing different mass eigenstate components have
different group velocities v,; = aftertime .., (coherence time) they
separate = Neutrinos stop oscillating! (Only averaged effect observable).

Coherence time and length:

A'U'tc:oh =~ Og; lcoh >~ Ulcoh

The standard formula for P... is obtained when the decoherence effects
are negligible.




Non-observation of neutrino oscillations at short distances.
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Even non-observation of neutrino oscillations at distances L < [ IS a
consequence of and an evidence for coherence of neutrino emission and
detection! Two-flavour example (e.g. for v, emission and detection):

Aprod/det(Vl) ~ cost, Aprod/det(VQ) ~ sin f =

A(ve = ve) = Y Aproa(ti)Aget(v;) = cos® 6 + e **?sin” 0

i=1,2

Phase difference A¢ vanishes at short L =
P(ve = v.) = (cos* 0 +sin® 0)? = 1

If 1 and v, were emitted and absorbed incoherently = one would have
to sum probabilities rather than amplitudes:

P(ve = ve) ~ Z |Aprod (V) [?|Ades (V) |? ~ cos® 0 +sin* 6 < 1
i=1,2




Giunti, Kim & Lee, Phys. Lett. B274 (1992) 87:

PaB(L7 E) Z UO‘?’U,BZU*]{UB G_Z(Amzk/2p)L e [L/(lcoh)zk]2 [AE /SO'E]

v 2E>
( coh) 2f|AZ | — 2f|Am | Ox — 1/201? — (1/2)(7}9/0E)
g 1k
1 1 1
2 — 2 + =

OF JEprod O Edet

Am?k
2F

AE;, =&

¢ Owverall normalization obtained by imposing unitarity condition!




Observability conditions for v oscillations:

» Coherence of v production and detection

» Coherence of v propagation

Both conditions put upper limits on neutrino mass squared differences Am?:

Am?k
2F

(1) AEj, ~ <K OE; (2)




Observability conditions for v oscillations:

» Coherence of v production and detection

» Coherence of v propagation

Both conditions put upper limits on neutrino mass squared differences Am?:

2 2
1) AE.; ~ Ay : 9 Am-““L ~
(1) ABj ~ 7= < og; (2) Sz L<ow>vy/op

But: The constraints on oz work in opposite directions:

Am? 2?2
(1) AEj, ~ —2* v




Observability conditions for v oscillations:

» Coherence of v production and detection

» Coherence of v propagation

Both conditions put upper limits on neutrino mass squared differences Am?:

But: The constraints on oz work in opposite directions:

Am3, 2F% v
Logp <K

S~ J g
(1) ABj~ = A

Are they compatible? — Yes, if LHS <« RHS =

L S o
27 l < Av— (>1) — fulfilled in all cases of practical interest
0oscC Ug
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The coherence propagation condition: satisfied very well for all but
astrophysical and cosmological neutrinos (solar, SN, relic v’s ...)

Coherent production/detection: usually satisfied extremely well due to the
tininess of neutrino mass

But: Is not automatically guaranteed in the case of “light” sterile neutrinos!

Msterile ~ €V — keV — MeV scale = heavy compared to the “usual’
(active) neutrinos

Sterile neutrinos: hints from SBL accelerator experiments (LSND, MiniBooNE),
reactor neutrino anomaly, keV sterile neutrinos, pulsar kicks, leptogenesis via
v oscillations, SN r-process nucleosynthesis, unconventional contributions to
260v decay ...

Production/detection coherence has to be re-checked — important
implications for some neutrino experiments!




Neutrino oscillations: Coherence at macroscopic distances —
L > 10,000 km In atmospheric neutrino experiments !




The complete process: production — propagation — detection: factorization
Tap = jo(E) PH(L, E) 0y(E)

with a universal P>°"(L, E) is only possible when all 3 processes are
independent

In general not true, and production — propagation — detection should be
considered as a single inseparable process!

To get the standard formula one assumes for the emitted and absorbed states
ve) = > Us (™)

The weights of the mass eigenstates are just U}, — do not depend on the
masses of v, = only true when the phase space volumes at production

and detection do not depend on the mass of v;.
_ EvgenyAktmedov  MoscowInternational Schoolof Physics2020  Voronovo, March39, 203 —p.87




This is only true if the charact. energy FE at production (and detection) is large
compared to all m; (relativistic neutrinos), or compared to all |m; — my|
(quasi-degenerate neutrinos).

= Neutrino oscillations can be described by a universal probability only
when neutrinos are relativistic or quasi-degenerate

Also: degree of coherence of the propagating neutrino state depends on the
coherence of the production and detection processes

= The standard formula for the oscillation probability is only valid when
all decoherence effects are negligible !
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The standard formula for osc. probability is stubbornly robust.
Validity conditions:
» Neutrinos are ultra-relativistic or quasi-degenerate in mass

» Coherence conditions for neutrino production, propagation
and detection are satisfied.

Gives also the correct result in the case of strong coherence
violation (complete averaging regime).

Gives only order of magnitude estimate when decoherence
parameters are of order one.

But: Conditions for partial decoherence are difficult to realize

They may still be realized if relatively heavy sterile neutrinos exist
EwenyMdmedoy  WosowemaionaSchooloiPhysies2020  Voonom Mach39,2020 p.33



Phenomenology of neutrino oscillations




lv.) = cos@|vy) +sinf |vy)
lv,) = —sinf|vy) + cos O |vy)
—
cosf) sinb c S
U = =
—sinf cos6 —s c

2
& P = sin? 20 sin? (A—mL>

¢ Problem: Derive this formula from the general expression for P, 3.

¢ Problem: Write this formula in the usual units, reinstating all factors of A
and c. Find its classical and non-relativistic limits.




Oscillation amplitude: sin® 26. Oscillation phase:

2
am=, L o= A g g P OMEV)

1p losc T Am? Am? (eV?)

For large oscillation phase = averaging regime (due to finite E-resolution of

detectors and/or finite size of v source/detector):

Am? 1
P,, = sin® 26 sin® m L —  Zsin?26
4p 2

=P \M
a=m E/(1.27 Am® L el S
CP >
a2} /2
P T A ut20)

p L {distance)
1 EVgehy Akhmedov L hEanCa)  ShalSehgo of Physics 2020 Voronovo, Mar SH28)2020 g1




For relativistic point-like v's (x ~ t) the evolution equation in the flavour basis:

d Ve Ve E O I/e
i ~ Hy — o ™ Ut
at Yy, Yy 0 E» Yy

E~p + 57 =

2 | ) Am? |
+52 0 —=2r0
o~ |U| V7 2E ot — |u iE ot
0 + 0 A
] PT 3% ] ] 1E ]

N.B.: A term prop. to unit matrix can always be added to/subtracted from Hg. Problem: prove this!

2-flavor evolution equation:

Am Am

o z'd Ve _ S cos20  =S-sin20 Ve
dt Am? _: Am?

vy, o sin 260 o cos 20 vy,

& Problem: find Py, by solving the evolution equation with the initial contition (1,0)7 .




For a 2 x 2 real symmetric matrix

the angle of rotation that diagonalizes it:

2b
tan20 = :
C—a
Eigenvalues:
a-+c (c—a)?
Ao = \/ b2 .

1,2 5 + 1 +
< >

Mixing angle #: the angle of rotation that diagonalizes eff. Hamiltonian Hy.

' 2
Eigenvalues of Hga: & o = +52.

Oscillation length: |l,sc = |822——7T81|"’9 _ A4mp

Am?2




3f neutrino mixing and oscillations




~

(n x n) unitary mixing matrix U = n? real parameters:

n(n+1)
2

n n(n—1) .
= 5 mixing angles,

phases

(N

For leptonic mixing matrix n phases can be absorbed into re-defenition of the
phases of LH charged fields: e,; — ei®=e,;. (e.g., 1stline of U can be made
real). This can be compensated in the mass term of charged leptons by
rephasing e, — e'?e,r, SO that e,reqar = inv.

Similarly, for Dirac neutrinos phases of one column can be fixed by absorbing
n — 1 phases into a redefinition of v;;, (RH neutrino fields can be rephased
analogously, so that 7, v;r =inv.) = In Dirac v case
n—+(n—1)=2n—1 phases are unphysical — can be rotated away by
redefining charged lepton and neutrino fields.

N.B.: Kinetic terms of ey, egr and vy, vg are also invariant w.r.t. rephasing.!




Number of physical phases:

n(n+1) (n—l)(n—2).
2 2

Phys. phases responsible for CP violation! = No Dirac-type CPV for n < 3.

—2n—-1) =

In Majorana case:

L, X u{CuL + h.c.

Rephasing of v, is not possible (cannot be compensated in L,,)

Only n phases can be removed from U (by redefinition of e, fields) =
In addition to Dirac-type phases there are (n — 1) physical Majorana-type
CP-violating phases.




Majorana-type phases can be factored out in the mixing matrix:

U=UK

U contains Dirac-type phases, K — Majorana-type phases o;:
K = diag(1,e"",...,e"7n"1)

Neutrino evolution equation: i v = Heg v

[ B ) [ B )

E
Hyg = UK : Kyt = U

Does not depend on the matrix of Majorana &# phases K =
v oscillations are insensitive to Majorana phases. Also true for osc. in matter.




Three neutrino species (v., v,, v-) — linear superpositions of three mass
eigenstates (v, v, v3). Mixing matrix U — 3 x 3 unitary matrix. Depends on

3 mixing angles and one Dirac-type ¢ phase dcp.

Experiment: 2 mixing angles large (in the standard parameterization —
612 and 6,3), one (#3) is relatively small.

Three neutrinos species — 2 independent mass squared differences,
e.g. Am3;, and Am3;.

Am3, < Amj,




From atmsopheric and LBL accelerator neutrino experiments:

O Am3, ~ 25x107% eV, O3 ~ 45°

From solar neutrino experiments and KamLAND:
O Ama, ~ 7.5 x107° eV?2, 010 ~ 33°
From T2K + Double Chooz, Daya Bay and Reno reactor neutrino experiments:

{013 ~9°  (previosly from Chooz < 12°)

CP-violating phase dcp practically unconstrained at the moment.




Relation between flavour and mass eigenstates:

3
Vo = § Uai Vi
1=1

v, — fields of flavour eigenstates, v; — of mass eigenstates.

3f mixing matrix:

Uel UeQ Ue3
U= U,ul UMQ U,u3
U’T]_ U7'2 U7'3




Relation btween flavour and mass eigenstates:

o) Z i)

Oscillation probability in vacuum:

3

P(vg = vg; L) =

- |l o

Ba

3f mixing matrix in the standard parameterization (c;; = cos0;;, s;; = sin6;,):

1 0 0 C13 0 8136_i5cp C192 S12 0
U=1 0 co3 593 0 1 0 —S12 c12 0
0 —S8923 (23 —Slgeiécp 0 C13 0 0 1

— 023 (F(s 013 F:g) 012 , F5 = diag(l , 1 . ez’écp)




'y
C12C13 $12C13 size °CF

_ Xo) X0)
U= | —s12c23 — €125813823€"°°P (1993 — $12813523€"°CF C13523
i i
$12823 — €12813C23€° Y —(C128923 — S12513C23€ °CF C13C23
mg g
A _— v A
s VvV
[ ] VT
2 2
ML 1 — M,
+ solar~7x102eV?2
) : __ml2
atmospheric
~2x103eV?2 )
atmospheric
2 — —3 2
rrb - - S 2x10""eV
5 solar~7x102eV 3 5
ml 1 __m3
2
0 0




v, — 1 o0scillation probability:

) 2
Amiy

Y Ui e i) g,

O P(Va,to = vait) =

e CP: vop < Uap = Uy —UX ({0cpr} = —{dcpr})

o I: t 2 to & Vo < V3
= Uai = U, ({ocp} — —{dcp})

T-reversed oscillations (“backwards in time”) < oscillations between
interchanged initial and final flavours

o CP and ¥ - absentin 2f case, pure N > 3f effects!

o No ¢P and 7 for survival probabilities (8 = «).




e CPT: Va,B < Va,pB & t2tg (I/a N4 VB)
o P(vg — Vﬁ) — P(Dﬁ — Ug)

The standard formula for P,z in vacuum is CPT invariant!

cP < ¥ - consequence of CPT

Measures of ¢ and Z° — probability differences:

APCﬁP = P(l/a — VB) — P(Da — ﬂg)

APTﬂ = P(vo = 1vg) — P(vg — vy)

From CPT:
o APSY =AP); APSY =0




One ¢ Dirac-type phase dcp (Majorana phases do not affect v

oscillations!) = one ¢ and 7° observable:

o AP;S = APJY = APS = AP

2 .
AP = — 4812 C12 $13 C13 S23 C23 Sl 5(}13

Vanishes when

» Atleastone Am;; =0

At least one 60,; = 0 or 90° Very difficult to
dcp = 0 or 180° observe!

In the averaging regime

In the limit L — 0 (as L?)

o o o ©




Approximate formulas for probabilities can be obtained using
expansions in small parameters:

1) Am?, _ Ams,
Amgfcm Am%l

~ 1/30

(2) |U63| — |SiIl(913| ~ 0.16

In the limits Am3, =0 or Us=0 — probabilities take an
effective 2f form.

(N.B.: P(vy — v5) = P(vg — va))







|. Dirac case

(epy" VIJEUL VL)WM_ + Zmlaéaea + Zmiﬂiui + h.c.

a=1 1=1

Sl

_£w+m —




|. Dirac case

(epy" VJUL VL)WM_ + Zmlaéaea + Zmiﬂiui + h.c.
a=1 i=1

Sl

_£w+m —

<> V[JEUL = U; VaL :ZUaiViL — |VaL Z |V2L

(x = e, p, T, i =1,2,3




|. Dirac case
—Loyim = i(éLq/“ VJUL VL)WM_ + Zmlaéaea + Zmiﬂiui + h.c.
V2 a=1 i=1
<> V[JEUL = U; VaL :ZUaiViL =4 |VaL Z |V2L
=1
(x = e, p, T, i =1,2,3
Am2 2




|. Dirac case

(epy" VJUL VL)WM_ + Zmlaéaea + Zmiﬂiui + h.c.

g
—»Cw—|—m — 7§
<> V[JEUL = U; VaL :ZUaiViL — |VaL Z |V2L
1=1
(x = e, p, T, i =1,2,3
n Am2 2
ij
o P(va = vg; L) = |, v UL
1=
ll. Majorana neutrinos
g n n
—Louw+m = ﬁ(éyy“ VIJ[UL I/L)WM_ + Zmlaéaea — Zmiuﬂc_luu; + h.c.
a=1 =1




|. Dirac case

(epy" VgUL VL)WM_ + Zmlaéaea + Zmiﬂiw + h.c.

g
—»Cw—|—m — 7§
<> V[JEUL = U; VaL :ZUaiViL — |VaL Z |VzL
i=
(ax = e, p, i =1,2,3
n Am2 2
ij
o P(va = vg; L) = |, v UL
1=
ll. Majorana neutrinos
g n n
—Louw+m = ﬁ(éyy“ VIJ[UL I/L)WM_ + Zmlaéaea — Zmiuﬂc_luu; + h.c.
a=1 =1

n
var =Y Usivie = |var) =Y Uk |viL)
i=1

Osc. probability: the same expression
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lll. Dirac + Majorana mass term (n LH and k£ RH neutrinos)

n n+k
_ _ 1 _
_['w-|—m — %(ELVM VI],LUL VL) W,u + Zmlaeaea + 5 ZszzXz + h.c.
a=1 1=1




lll. Dirac + Majorana mass term (n LH and k£ RH neutrinos)

n n+k
_ _ 1 _
_['w-|—m — %(élfyu VI],LUL VL) W,u + Zmlaeaea + 5 ZszzXz + h.c.
a=1 1=1
vy, VL,
nL - ! \c — /c
(NR) NL
n—+k
Nap = ¥ UaiXiL U MU = My,

1=1




lll. Dirac + Majorana mass term (n LH and k£ RH neutrinos)

n n+k
g : _ _ 1 _
—Loytm = \ﬁ(eLW” ViUpv) W, + O;mlaeaea + 2 ; miXix: + h.c.
N A
(NR)© N'g
n+k
Nap = ¥ UaiXiL U MU = My,
i=1
Xi:XiL—'_(XiL)C) 7::17"'7”+k7




lll. Dirac + Majorana mass term (n LH and k£ RH neutrinos)

n+k

_£w+m — %(eLfY'u VTUL VL)W + Zmlaeaea + ZszzXz + h.c.
a=1 =1

1

VT, vy,
’)’LL — —
(NR)* N’}
n—+k
Nap = ¥ UaiXiL U MU = My,
=1
XZ:XZL—'_(XZL)C? 'I::].,...,n—i_k',
1 n+k n—|—k:
_ 1 — —
£m — 5 nr C M nL+h cC. = Z MdezLC X'LL‘|‘h C. = Z Md’LX’LX’L




lll. Dirac + Majorana mass term (n LH and k£ RH neutrinos)

n—|—k:

9
_£w+m — T(GLV'IL VTUL VL)W + Zmlaeaea + ZszzXz + h.c.
a=1 =1

vy vy
’)’LL — —
(NR)* N’}
n—+k
Nap = ¥ UaiXiL U MU = My,
=1
XZ:X’LL—i_(X’LL)C? ’I::].,...,n—i_k',
1 n+k n—|—k:
_ 1 — - _
Em — 9 nr C M nL+h cC. = Z MdezLC X'LL‘|‘h C. = Z Md'LX'LXz

Index a cantake n + k values; denote collectively the first n of them with «
and the last k£ with ¢ =
_ EvgeryAdmedov \MoscowlnlemationalSchoolofPhysics2020  \oronow,March3:0,2020 —p.60 _




Active and sterile LH neutrino fields in terms of LH components of mass
eigenstates:

n-+k n-+k
Vol = E UniXiL (Vor)S = E UyiXiL -
i—1 i—1




Active and sterile LH neutrino fields in terms of LH components of mass
eigenstates:

n-+k n-+k
Vol = E UniXiL (Vor)S = E UyiXiL -
i—1 i—1

The usual oscillations described by the standard f-la with U — &/ and
summation over ¢ up to n + k. In addition: new types of oscillations possible.
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n-+k n-+k
Vol = E UniXiL (Vor)S = E UyiXiL -
i—1 i—1

The usual oscillations described by the standard f-la with U — &/ and
summation over ¢ up to n + k. In addition: new types of oscillations possible.

Active - sterile neutrino oscillations:




Active and sterile LH neutrino fields in terms of LH components of mass
eigenstates:

n-+k n-+k
VaL = § uaz'XiL, VJR § Z/{azXzL
1=1

The usual oscillations described by the standard f-la with U — &/ and
summation over ¢ up to n + k. In addition: new types of oscillations possible.

Active - sterile neutrino oscillations:

Sterile - sterile neutrino oscillations:

P(vo, — VCpL§L) =







ve) = cosO|vy) +sinf |vy)

lv,) = —sinf |vy) + cos 0 |vy)

In general, 6 € |0, 2~7|. But: there are transformations that leave » mixing
formulas unchanged:

] 0—=0+m, |v)——|v), |r) ——|rn) = 0c[-F, 7]
o 0 — —0, |V2> — _|V2>7 Vu> — = Vu> = ¢ [07 %]
s 0% -0, |nn) <), v,) = —|v,) = Am? — —Am?

One can always choose Am? > 0 by choosing appropriately 6 within [0, 5.

For vacuum oscillations: P;,, P.wv depend only on sin?26 = one can

choose ¢ to be in [0, 7]. Not true for oscillations in matter!

Similar considerations in the 3f case: all 0;; € [0, %], dcp € [0, 27].




QM uncertainty relations: o, is related to the spatial localization of the
production (detection) process, while o to its time scale =
independent quantities.

On the other hand: Neutrinos propagating macroscopic distances are on the
mass shell. For on-shell mass eigenstates E* = p* + m? means

Eog = poy,
How can this be understood?

The solution: At production, neutrinos are not on the mass shell. They go on
shell only after they propagate x ~ (a few)x De Broglie wavelengths. After
that their energy and momentum get related by E* = p* + m? = the
larger uncertainty shrinks towards the smaller one to satisfy Eor = po,.

On-shell relation between E and p allows to determine the less certain of
the two through the more certain one, reducing the error of the latter.




The length of v w. packets: ¢, ~ 1/0,. For propagating on-shell neutrinos:
op =~ min{oP?, (E/p)otrod} = min{oP"¢, (1/v,)o2rod

Which uncertainty is smaller at production, 2™ or a%md ?




The length of v w. packets: ¢, ~ 1/0,. For propagating on-shell neutrinos:
op =~ min{oP?, (E/p)otrod} = min{oP"¢, (1/v,)o2rod

Which uncertainty is smaller at production, o2 or a%md ?

Consider neutrino production in decays of an unstable particle localized in a
box of size Lg. Time between two collisions with the walls of the box: T&s.




The length of v w. packets: ¢, ~ 1/0,. For propagating on-shell neutrinos:
op =~ min{oP?, (E/p)otrod} = min{oP"¢, (1/v,)o2rod

Which uncertainty is smaller at production, o2 or a%md ?

Consider neutrino production in decays of an unstable particle localized in a
box of size Lg. Time between two collisions with the walls of the box: T&s.

» If Ts < 7 (r — lifetime of the parent unstable particle) =
op ~ Tg' (collisional broadening). Mom. uncertainty: o, ~ Lg".

But: Ls=vsTs = o < o0p (a consequence of vg < 1)




The length of v w. packets: ¢, ~ 1/0,. For propagating on-shell neutrinos:
op =~ min{oP?, (E/p)otrod} = min{oP"¢, (1/v,)o2rod

Which uncertainty is smaller at production, o2 or a%md ?

Consider neutrino production in decays of an unstable particle localized in a
box of size Lg. Time between two collisions with the walls of the box: T&s.

» If Ts < 7 (r — lifetime of the parent unstable particle) =
op ~ Tg' (collisional broadening). Mom. uncertainty: o, ~ Lg".

But: Ls=uvsTs = o < oy (a consequence of vg < 1)

o If Tg > 7 (quasi-free parent particle) = o5 ~ 7 !=T.
op = [(p/E)T|™' = [(p/E)og|™!, ie. o ~ (p/E)o, < op.




prod

In both cases |05 °® < o™ | < also when /s are produced in collisions.

p

OF (o
— Opeff = ) Or =
Vg OF

In the stationary limit (cg — 0) one has o, . — 0 even though o, is finite!
Therefore o, — oo and so the coherence length .., — oo
— a well known result.




Spreading of the wave packets: consequence of the fact that the there is a
spread of momenta inside of the wave packets and of the p-dependence of the
group velocity.

i 8/07; . 1 ; 1 7 - —
Uspr = apj 0}79 — E((Sij o /Uivj)ai?? — E[Jp - vi(v p)]
This gives
2
1 Op _ 9p 2y _ Ip M
Uspr. Ev /Ugls|pr _E(l_v )_E—2

2 3 2,2
Liransy ™ E/Upa tlong. ~ F /Upm ]







In quantum theory propagating particles are described by wave packets!
— Finite extensions in space and time.

Plane waves: the wave function attime t =0 ¥, (Z) = e#o®

1.5+

L

-15-

Wave packets: superpositions of plane waves with momenta in an interval of
width o, around mom. py, = constructive interference in a spatial interval
of width o, around some point zy and destructive interference outside it.

0.0, > 1/2 — QM uncertainty relation




W. packet centered at ©p =0 attime ¢ = 0:

= = d’p S o\ T
U(&; po, o) = 2m)i7? f(P—po)e

Rectangular mom. space w. packet:

fh ﬂf(\h\
AN AT M s n

vawwﬂ [l

o
—_—

. i
2,

Gaussian mom. space w. packet:

oll
0/2 5
049 > _E'VV_VV | 1 Vz\/v 3 4
1 p
03 2
021
-4
0.11 u
.6
LA R D - - A
p

oy0, = 1/2 — minimum uncertainty packet




Include time dependence:

= d’ N 1
U(E 1) = / P b5 — py) ePEIE®N

(27)3/2
Expand E(p) = +/p?+m? near p = py:
E(p) = E(po) + 61;](?19 N (P — Po) %62(%2 )ﬁo(q— 50)” +
- _ OB _ P L _ OB _ m®
! op E’ 02 2
\Ij(fa t) ~ etpoZ—iE(po) tf(d P1 (]7) ip1 (Z—Ugt) (@ — 0)

Center of the wave packet: 7 — v,t =0




The evolved produced state:
7t > _ Z U;z |V;nass Z U* \IJS mass>

The coordinate-space wave function of the ith mass eigenstate (w. packet):

- _ d3 S ipr—iE; (p)t
W) = [t 15 e

Momentum distribution function f°(5): sharp maximum at 7= P (width of the
peak o,p < P).

8Ez P - — 1 82Ez P - —
) = )+ 28 gop) 22 opy g
P Po
- _ 0B _ 7 o PEip) _ m
’ op E;’ - Op? E?




1

US (T, 1) ~ e FPIHPT gS(7 _G) | (o — 0)

gz ( féﬂ-%% 7

1) e (F=T51)

Center of the wave packet: 7 — v;t = 0. Spatial length: o,p ~ 1/0,p

(g7 decreases quickly for |7 — @;t| > o.p).

Detected state (centered at # = L):

V5 (@))

> Ui U8 (@) |p)
k

The coordinate-space wave function of the ith mass eigenstate (w. packet):

v~ [

d>p
(2m)?

12 () €7




Transition amplitude:

«Aaﬁ(Tal——:) — <VB|V T L Z UB’L )

, Y d3 S Dx iE; (p)T+ipL
ATE) = [ S5 15w 1w

Strongly suppressed unless |E —u;T| < o,. E.Q., for Gaussian wave packets:

—

(L — v;T)?
4o

—

Ai(T,L) x exp |— 2 = g2

2
= Ogp + OrD

, o

Oscillation probability:

O Pa = vsT,L) = |Aus|” Z iUsiUnn Ul (T, L) A (T, L)




Neutrino emission and detection times are not measured (or not accurately
measured) in most experiments = integration over T':

Amzk

Plvg = vg L) = ‘/dTP(l/a%Vﬂ;T,L Z UsiUguUspe” 20 1




Neutrino emission and detection times are not measured (or not accurately
measured) in most experiments = integration over T':

Amzk

Plvg = vg L) = /dTP(Va—>V5;T,L Z UsiUguUspe” 20 1

~ d
I =N /%f?(?‘kq — AEz‘k/Q”U + Pz')fz-D*(’l“k,q — AEik/Q”U -+ Pz)

<[5 (rig + A /20 + Po) P (riq + AEi, /20 + Py) ' 9

Here: v=%E% Av=wv,—v;, rip=-=t, N=1/[2E;(P)2Ey(P)v]




Neutrino emission and detection times are not measured (or not accurately
measured) in most experiments = integration over T':

Amzk

Plvg = vg L) = /dTP(Va—>V5;T,L Z UsiUguUspe” 20 1

~ d
I =N /%f{g(mq — AEik/Q”U + Pz')f,b-D*(’I“k,q — AEik/Q”U -+ Pz)

<[5 (rig + A /20 + Po) P (riq + AEi, /20 + Py) ' 9

Here: v=%E% Av=wv,—v;, rip=-=t, N=1/[2E;(P)2Ey(P)v]

» For (Av/v)o,L <1 (i.e. L < leon = (v/Av)o,) I, is approximately
independent of L; in the opposite case I;;; is strongly suppressed




Neutrino emission and detection times are not measured (or not accurately
measured) in most experiments = integration over T':

Amzk:

Plvg = vg L) = /dTP(Va—>V5;T,L Z UsiUguUspe” 20 1

~ d
I =N /%f{g(rkq — AEik/QU + Pi)fzp*(’l“kq — AEik/QU -+ Pz)

<[5 (rig + A /20 + Po) P (riq + AEi, /20 + Py) ' 9

Here: v=%E% Av=wv,—v;, rip=-=t, N=1/[2E;(P)2Ey(P)v]

» For (Av/v)o,L <1 (i.e. L < leon = (v/Av)o,) I, is approximately
independent of L; in the opposite case I;;; is strongly suppressed

» I, is also strongly suppressed unless AE; /v < 0,, i.6. AEy < op
— coherent production/detection condition




Neutrino oscillations — a QM interference phenomenon, owe their existence
to QM uncertainty relations

Neutrino energy and momentum are characterized by uncertainties g and
o, related to the spatial localization and time scale of the production and
detection processes. These uncertainties

» allow the emitted/absorbed neutrino state to be a coherent superposition
of different mass eigenstates

# determine the size of the neutrino wave packets = govern
decoherence due to wave packet separation

o — the effective energy uncertainty, dominated by the smaller one between
the energy uncertainties at production and detection. Similarly for o,,.




Oscillation probability calculated in QM w. packet approach is not
automatically normalized ! Can be normalized “by hand” by imposing the

unitarity condition:
> Pag(L) =1
3

This gives

(L, T)|? =1 Fy; =N S 1
[arawnp =1 - [ WP P W)
— Important for proving Lorentz invariance of the oscillation probability.

Depends on the overlap of f(p) and f°(p) = no independent
normalization of the produced and detected neutrino wave function would do!

In QFT approach the correctly normalized P,s(L) is automatically obtained
and the meaning of the normalization procedure adopted in the w. packet
approach clarified




# Neutrino wave packet postulated rather than derived, widths estimated
# Production and detection processes are not considered

# |[nadequate normalization procedure. Normalization “by hand” is
unavoidable.

Advantage: simplicity







1. “Paradox” of neutrino w. packet length

For neutrino production in decays of unstable particles at rest (e.g. ™ — pv,):

v v
= ~ % (= v,T)

op ~ 17 = = 1., Op ~
OF PW
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On the other hand, if the decaying pion is boosted in the direction of the
neutrino momentum, the neutrino w. packet should be Lorentz-contracted !




1. “Paradox” of neutrino w. packet length

For neutrino production in decays of unstable particles at rest (e.g. ™ — pv,):

Y9 o Yo
OF PW

—1

Op >~ T = F’ﬂ') O, = (: UgT)

For decay in flight: T7. = (m,/FE:)'x. One might expect
/ E7T

o :m—0x>ax.
7T

On the other hand, if the decaying pion is boosted in the direction of the
neutrino momentum, the neutrino w. packet should be Lorentz-contracted !

The solution: pion decay takes finite time. During the decay time the pion
moves over distance [ = ur’ (“chases” the neutrino if u > 0).

VgT
Yu(l + vgu)
[the relativ. law of addition of velocities: v, = (vy +u)/(1 + vyu)].
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o, v, [T =l =v) 7" —ur’ = (v, —u)y,7 =

g Y




That is

r_ Ox
T (1 vgu)

o

For relativistic neutrinos v, ~ v, ~1 =

, /1 —u
0, = Oy
14+ u

= when the pion is boosted in the direction of neutrino emission (u > 0)
the neutrino wave packet gets contracted; when it is boosted in the opposite
direction (u < 0) — the wave packet gets dilated.




The oscillation probability must be Lorentz invariant! But: L. invariance is not
obvious in QM w. packet approach which (unlike QFT) is not manifestly
Lorentz covariant.
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A more general argument (applies also to Mossbauer neutrinos which are not
pointlike): Consider the phase difference

1 Am?
= — — — E
O A¢ o (L — vyt)AE + 2

L

— a Lorentz invariant quantity, though the two terms are in not in general
separately Lorentz invariant.

But: If the 1st term is negligible in all Lorentz frames, the second term is
Lorentz invariant by itself =- L/p is Lorentz invariant.

The 1st term can be neglected when the production/detection coherence
conditions are satisfied. In particular, it vanishes in the limit of pointlike
neutrinos L =v,t. N.B.:

L —wv4t
Ug T U (t+ul)| = Y :
1+ vyu Yu (1 + vou)

L' —vjt" =, |(L+ut) —

l.e. the condition L = v,¢ is Lorentz invariant. MB neutrinos: AE ~ 0.
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The oscillation probability must be Lorentz invariant even when the coherence
conditions are not satisfied !

Lorentz invariance is enforced by the normalization condition.
Puy(L) = > UaiUsUs Uk Li(L),  where
i,k

Lin(L) = /dTAz(L,T)AZ(L,T)e_"'A¢ik

From the norm. cond. [dT|A;(L,T)* =1 =

A Pdt = inv. = |Ai||Akldt = inv. = AARdT = inv.

The phase difference A¢;. = AFE;,T — Ap; L is also Lorentz invariant =
sois I;;(L), and consequently P,,(L).
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Lorentz factor v, = E/m2 > 1 = the conditions AE’ < 0%, Ap’ < o, can
be violated for small enough ms. Moreover, for non-rel. neutrinos quite
generally AE ~ E > 0!

Resolution: the conditions AE < o, Ap < o, are not Lorentz invarint. They
follow form the Lorentz-inv. coherent production condition

AE -6t — Ap - dx| < 1

only assuming that the two terms on the LHS do not (approximately) cancel
each other and are separately small.
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oo, ..=AE -6t — Ap' - 62’ ~ AE"- (6t' +02') ~ 0.

osc

— no enhancement of §¢, .. actually occurs!
More accurate calculation (taking into account the small deviation of v = —v,2
from —1):

0Ppse = 0ose <K 1.

Conditions AFE < og, Ap < o, are valid only in the frames where the neutrino
source is at rest or is slowly moving. Should be used with caution! Cannot be
automatically extrapolated from one Lorentz frame to another.
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