Neutrino physics (3)

Evgeny Akhmedov

Max-Planck Institute für Kernphysik, Heidelberg

Neutrino oscillations in matter

The MSW effect (Wolfenstein, 1978; Mikheyev \& Smirnov, 1985)
Matter can change the pattern of neutrino oscillations drastically

Neutrino oscillations in matter

The MSW effect (Wolfenstein, 1978; Mikheyev \& Smirnov, 1985)
Matter can change the pattern of neutrino oscillations drastically
Resonance enhancement of oscillations and resonance flavour conversion possible

Neutrino oscillations in matter

The MSW effect (Wolfenstein, 1978; Mikheyev \& Smirnov, 1985)
Matter can change the pattern of neutrino oscillations drastically
Resonance enhancement of oscillations and resonance flavour conversion possible

Responsible for the flavor conversion of solar neutrinos (LMA MSW solution established). Important for oscill. of accel. and SN neutrinos.

Neutrino oscillations in matter

The MSW effect (Wolfenstein, 1978; Mikheyev \& Smirnov, 1985) Matter can change the pattern of neutrino oscillations drastically

Resonance enhancement of oscillations and resonance flavour conversion possible

Responsible for the flavor conversion of solar neutrinos (LMA MSW solution established). Important for oscill. of accel. and SN neutrinos.

How can matter affect neutrino oscillations?

For $E \sim 1 \mathrm{MeV}$ neutrinos mean free path in lead is $\sim 1 \mathrm{l} . \mathrm{y}$.!

$$
\diamond \text { mean free path }=\langle\sigma n v\rangle^{-1}
$$

For incoherent processes (capture, finite-angle scattering)

$$
\sigma \propto\left(G_{F}\right)^{2}
$$

Coherent forward scattering: effects $\sim G_{F}$, i.e. much stronger!
Lead to effective potentials for neutrinos in matter $\sim G_{F} N$.

Neutrino oscillations in matter

Coherent forward scattering on the particles in matter

$$
V_{e}^{\mathrm{CC}} \equiv V=\sqrt{2} G_{F} N_{e}
$$

$2 f$ neutrino evolution equation $(x \simeq t)$:

$$
i \frac{d}{d x}\binom{\nu_{e}}{\nu_{\mu}}=\left(\begin{array}{ll}
-\frac{\Delta m^{2}}{4 E} \cos 2 \theta+V(x) & \frac{\Delta m^{2}}{4 E} \sin 2 \theta \\
\frac{\Delta m^{2}}{4 E} \sin 2 \theta & \frac{\Delta m^{2}}{4 E} \cos 2 \theta
\end{array}\right)\binom{\nu_{e}}{\nu_{\mu}}
$$

For antineutrinos $V(x) \rightarrow-V(x)$.

Neutrino potential in matter

At low neutrino energies the effective Hamiltonian CC interactions
$H_{\mathrm{CC}}=\frac{G_{F}}{\sqrt{2}}\left[\bar{e} \gamma_{\mu}\left(1-\gamma_{5}\right) \nu_{e}\right]\left[\bar{\nu}_{e} \gamma^{\mu}\left(1-\gamma_{5}\right) e\right]=\frac{G_{F}}{\sqrt{2}}\left[\bar{e} \gamma_{\mu}\left(1-\gamma_{5}\right) e\right]\left[\bar{\nu}_{e} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu_{e}\right]$,
(Fierz transformation used). To obtain the matter-induced potential for ν_{e} fix the variables corresponding to ν_{e} and integrate over the electron variables:

$$
H_{\mathrm{eff}}\left(\nu_{e}\right)=\left\langle H_{\mathrm{CC}}\right\rangle_{\text {electron }} \equiv \bar{\nu}_{e} V_{e} \nu_{e} .
$$

We have:

$$
\left\langle\bar{e} \gamma_{0} e\right\rangle=\left\langle e^{\dagger} e\right\rangle=N_{e}, \quad\langle\bar{e} \boldsymbol{\gamma} e\rangle=\left\langle\mathbf{v}_{e}\right\rangle, \quad\left\langle\bar{e} \gamma_{0} \gamma_{5} e\right\rangle=\left\langle\frac{\boldsymbol{\sigma}_{e} \mathbf{p}_{e}}{E_{e}}\right\rangle, \quad\left\langle\bar{e} \gamma \gamma_{5} e\right\rangle=\left\langle\boldsymbol{\sigma}_{e}\right\rangle,
$$

For unpolarized medium of zero total momentum only the first term survives
\qquad

$$
\left(V_{e}\right)_{\mathrm{CC}} \equiv V=\sqrt{2} G_{F} N_{e}
$$

Oscillations in matter of constant density

$$
\diamond \quad P_{t r}=\sin ^{2} 2 \theta_{m} \sin ^{2}\left(\pi l_{l_{s o s}}^{L}\right)
$$

Oscillations in matter of constant density

$$
\diamond \quad P_{\mathrm{tr}}=\sin ^{2} 2 \theta_{m} \sin ^{2}\left(\pi \frac{L}{l_{\mathrm{osc}}^{m}}\right)
$$

$$
\sin ^{2} 2 \theta_{m}=\frac{\sin ^{2} 2 \theta \cdot\left(\frac{\Delta m^{2}}{2 E}\right)^{2}}{\left[\frac{\Delta m^{2}}{2 E} \cos 2 \theta-\sqrt{2} G_{F} N_{e}\right]^{2}+\left(\frac{\Delta m^{2}}{2 E}\right)^{2} \sin ^{2} 2 \theta}
$$

Osc. length: $l_{\mathrm{osc}}^{m}=l_{\mathrm{osc}}\left(\sin 2 \theta_{m} / \sin 2 \theta\right)$.

Oscillations in matter of constant density

$$
\diamond \quad P_{\mathrm{tr}}=\sin ^{2} 2 \theta_{m} \sin ^{2}\left(\pi \frac{L}{l_{\mathrm{osc}}^{m}}\right)
$$

$$
\diamond \sin ^{2} 2 \theta_{m}=\frac{\sin ^{2} 2 \theta \cdot\left(\frac{\Delta m^{2}}{2 E}\right)^{2}}{\left[\frac{\Delta m^{2}}{2 E} \cos 2 \theta-\sqrt{2} G_{F} N_{e}\right]^{2}+\left(\frac{\Delta m^{2}}{2 E}\right)^{2} \sin ^{2} 2 \theta}
$$

Osc. length: $l_{\mathrm{osc}}^{m}=l_{\mathrm{osc}}\left(\sin 2 \theta_{m} / \sin 2 \theta\right)$.

Oscillations in matter of constant density

$$
P_{\mathrm{tr}}=\sin ^{2} 2 \theta_{m} \sin ^{2}\left(\pi \frac{L}{l_{\mathrm{osc}}^{m}}\right)
$$

Osc. length: $\quad l_{\text {osc }}^{m}=l_{\text {osc }}\left(\sin 2 \theta_{m} / \sin 2 \theta\right)$.

MSW resonance:

$$
\sqrt{2} G_{F} N_{e}=\frac{\Delta m^{2}}{2 E} \cos 2 \theta
$$

$$
\theta_{m}=45^{\circ}
$$

independently of θ !
$\left(l_{\text {osc }}^{m}\right)_{\text {res }}=l_{\text {osc }} / \sin 2 \theta$.

The MSW resonance condition

$$
\pm \sqrt{2} G_{F} N_{e}=\frac{\Delta m^{2}}{2 E} \cos 2 \theta
$$

For given E yields $\left(N_{e}\right)_{\text {res }}$ (or vice versa).
For neutrinos LHS $>0 \Rightarrow$ can only be satisfied if RHS >0 :

$$
\Delta m^{2} \cos 2 \theta=\left(m_{2}^{2}-m_{1}^{2}\right)\left(\cos ^{2} \theta-\sin ^{2} \theta\right)>0
$$

\Rightarrow If ν_{2} is heavier than ν_{1}, one needs $\cos ^{2} \theta>\sin ^{2} \theta$ and vice versa.
$\Leftrightarrow \quad$ Lighter mass eigenstate must have larger ν_{e} component.
If one chooses $\cos 2 \theta>0$, the resonance for neutrinos occurs when

$$
\Delta m_{21}^{2}>0
$$

For $\Delta m_{21}^{2}<0 \Rightarrow$ res. takes place for antineutrinos.

Matter of varying density

At any point x eff. Hamiltonian $H_{m}(x)$ can be diagonalized by unitary transf. $U_{m}=U_{m}(x)$ with the mixing angle $\theta_{m}=\theta_{m}(x)$:

$$
\diamond \quad \tan 2 \theta_{m}(x)=\frac{\sin 2 \theta \cdot \frac{\Delta m^{2}}{2 E}}{\frac{\Delta m^{2}}{2 E} \cos 2 \theta-\sqrt{2} G_{F} N_{e}(x)}
$$

In general osc. probability cannot be found in closed form.
$\left|\nu_{1 m}\right\rangle,\left|\nu_{2 m}\right\rangle$ - local (at point x) eigenstates of H_{m} (matter eigenstates):

$$
\left|\nu_{1 m}\right\rangle=\cos \theta_{m}\left|\nu_{e}\right\rangle-\sin \theta_{m}\left|\nu_{\mu}\right\rangle
$$

$$
\left|\nu_{2 m}\right\rangle=\sin \theta_{m}\left|\nu_{e}\right\rangle+\cos \theta_{m}\left|\nu_{\mu}\right\rangle
$$

$$
\begin{array}{ll}
N_{e} \gg\left(N_{e}\right)_{\mathrm{res}}: \quad & \theta_{m} \approx 90^{\circ} \\
N_{e}=\left(N_{e}\right)_{\mathrm{res}}: & \theta_{m}=45^{\circ} \\
N_{e} \ll\left(N_{e}\right)_{\mathrm{res}}: & \theta_{m} \approx \theta
\end{array}
$$

In the adiabatic regime: $\nu_{1 m}$ and $\nu_{2 m}$ do not go into each other \Rightarrow ν_{e} born at high density will remain ν_{e} at small N_{e} with probability $\sin ^{2} \theta$ and go to ν_{μ} with probability $\cos ^{2} \theta$ independently of L !

Adiabatic flavour conversion

Adiabaticity: slow density change along the neutrino path

$$
\frac{\sin ^{2} 2 \theta}{\cos 2 \theta} \frac{\Delta m^{2}}{2 E} L_{\rho} \gg 1
$$

L_{ρ} - electron density scale hight:

$$
L_{\rho}=\left|\frac{1}{N_{e}} \frac{d N_{e}}{d x}\right|^{-1}
$$

Analogy: Two coupled pendula

Mechanical model of the MSW effect

Analogy: Two coupled pendula

Mechanical model of the MSW effect

Analogy: Two coupled pendula

Mechanical model of the MSW effect

Analogy: Two coupled pendula

Mechanical model of the MSW effect

Evolution of matter eigenstates

Flavour states in terms of local matter eigenstates:

$$
\diamond \quad\left|\nu_{\mathrm{f}}\right\rangle=U_{m}^{\dagger}(x)\left|\nu_{\text {matt }}\right\rangle
$$

Evolution equation: $i \frac{d}{d x}\left|\nu_{\mathrm{f}}\right\rangle=H_{\mathrm{fl}}^{m}(x)\left|\nu_{\mathrm{f}}\right\rangle \quad \Rightarrow$

$$
\diamond i \frac{d}{d x}\left|\nu_{\mathrm{matt}}\right\rangle=\left[U_{m} H_{\mathrm{fl}}^{m} U_{m}^{\dagger}-i U_{m}\left(U_{m}^{\dagger}\right)^{\prime}\right]\left|\nu_{\mathrm{matt}}\right\rangle
$$

For the 2f case: $\quad U_{m}=\left(\begin{array}{cc}c_{m} & s_{m} \\ -s_{m} & c_{m}\end{array}\right) \Rightarrow$

$$
i \frac{d}{d x}\binom{\nu_{1 m}}{\nu_{2 m}}=\left(\begin{array}{lc}
\mathcal{E}_{1}(x) & -i \theta_{m}^{\prime}(x) \\
i \theta_{m}^{\prime}(x) & \mathcal{E}_{2}(x)
\end{array}\right)\binom{\nu_{1 m}}{\nu_{2 m}}
$$

$\mathcal{E}_{1}(x), \mathcal{E}_{2}(x)$ - local eigenvals. of H_{f}^{m} at a given x.

Adiabatic regime

$$
\diamond\left|\mathcal{E}_{2}(x)-\mathcal{E}_{1}(x)\right|=\sqrt{\left[\frac{\Delta m^{2}}{2 E} \cos 2 \theta-\sqrt{2} G_{F} N_{e}(x)\right]^{2}+\left(\frac{\Delta m^{2}}{2 E}\right)^{2} \sin ^{2} 2 \theta}
$$

If $\left|\mathcal{E}_{2}-\mathcal{E}_{1}\right| \gg 2\left|\theta_{m}^{\prime}\right|$ (adiabatic regime) \Rightarrow matter eigenstates $\nu_{1 m}$ and $\nu_{2 m}$ evolve independently. Adiabaticity condition:

$$
\frac{\left|\mathcal{E}_{2}-\mathcal{E}_{1}\right|_{\mathrm{res}}}{2\left|\theta_{m}^{\prime}\right|}=\frac{\Delta m^{2}}{2 E} \frac{\sin ^{2} 2 \theta}{\cos 2 \theta} L_{\rho} \gg 1
$$

$L_{\rho} \equiv\left|N_{e}^{\prime} / N_{e}\right|^{-1}$ - scale height of electron number density. Let $|\nu(0)\rangle=\left|\nu_{e}\right\rangle:$

$$
|\nu(0)\rangle=c_{m}(0)\left|\nu_{1 m}\right\rangle+s_{m}(0)\left|\nu_{2 m}\right\rangle
$$

In the adiabatic regime:

$$
|\nu(x)\rangle=c_{m}(0) e^{-i \int_{0}^{x} \mathcal{E}_{1}\left(x^{\prime}\right) d x^{\prime}}\left|\nu_{1 m}\right\rangle+s_{m}(0) e^{-i \int_{0}^{x} \mathcal{E}_{2}\left(x^{\prime}\right) d x^{\prime}}\left|\nu_{2 m}\right\rangle
$$

Adiabatic regime

At the point x the state $\left|\nu_{\mu}\right\rangle$ can be expanded as

$$
\left|\nu_{\mu}\right\rangle=-s_{m}(x)\left|\nu_{1 m}\right\rangle+c_{m}(x)\left|\nu_{2 m}\right\rangle
$$

Transition probability: $P_{\operatorname{tr}}=\left|\left\langle\nu_{\mu} \mid \nu(x)\right\rangle\right|^{2} \quad \Rightarrow$

$$
P_{\mathrm{tr}}=\frac{1}{2}-\frac{1}{2} \cos 2 \theta_{i} \cos 2 \theta_{f}-\frac{1}{2} \sin 2 \theta_{i} \sin 2 \theta_{f} \sin \Phi
$$

$$
\theta_{i}=\theta_{m}(0), \quad \theta_{f}=\theta_{m}(x), \quad \Phi=\int_{0}^{x}\left(\mathcal{E}_{1}-\mathcal{E}_{2}\right) d x^{\prime}
$$

\diamond Problem: Derive this expression.
If $N_{e}(0) \gg\left(N_{e}\right)_{\text {res }}$ or $\theta_{f} \ll 1$: the 3rd term can be neglected (also if $\Phi \gg 1$ and averaging is performed) $\Rightarrow P_{\operatorname{tr}}$ depends only on θ_{i} and θ_{f}.

$$
\text { In the case } \left.N_{e}(0) \gg\left(N_{e}\right)_{\text {res }}, N_{e}(x) \ll\left(N_{e}\right)_{\text {res }} \quad \text { (i.e. } \theta_{i} \simeq 90^{\circ}, \theta_{f} \simeq \theta\right)
$$

$\Rightarrow \quad P_{\mathrm{tr}}=\cos ^{2} \theta, \quad P_{\text {surv }}=\sin ^{2} \theta$.

Violation of adiabaticity

Possible adiabaticty violation can be taken into account.
E.g. in the averaging regime (Parke, 1986):

$$
\bar{P}_{\mathrm{tr}}=\frac{1}{2}-\frac{1}{2} \cos 2 \theta_{i} \cos 2 \theta_{f}\left(1-2 P^{\prime}\right)
$$

$P^{\prime}-$ probability of $\nu_{1 m} \leftrightarrow \nu_{2 m}$ transitions between points 0 and x. In the Landau-Zener approximation: $P^{\prime} \simeq e^{-\frac{\pi}{2} \gamma}$ where γ is the adiab. parameter. In the extreme non-adaiabatic regime:

$$
\diamond i \frac{d}{d x}\binom{\nu_{1 m}}{\nu_{2 m}}=\left(\begin{array}{lc}
0 & -i \theta_{m}^{\prime}(x) \\
i \theta_{m}^{\prime}(x) & 0
\end{array}\right)\binom{\nu_{1 m}}{\nu_{2 m}}
$$

Can be solved exactly by $x \rightarrow \tau=\theta_{m}(x), \quad \frac{d}{d \tau}=\frac{1}{\theta_{m}^{\prime}(x)} \frac{d}{d x} \quad \Rightarrow$

$$
\diamond P^{\prime}=\sin ^{2}\left(\theta_{i}-\theta_{f}\right)
$$

\diamond Problem: Derive this expression.

Vacuum oscillation limits

1. The mixing angle and osc. length in matter $\theta_{m}, l_{\text {osc }}^{m}$ go to $\theta, l_{\text {osc }}$ when

$$
V=\sqrt{2} G_{F} N_{e} \ll \frac{\Delta m^{2}}{2 E}
$$

$\Rightarrow \quad P_{\mathrm{osc}} \rightarrow P_{\mathrm{osc}}^{v a c}$. In terms of convenient parameters:

$$
\sqrt{2} G_{F} N_{e} \simeq 7.63 \times 10^{-14} \rho\left(\mathrm{~g} / \mathrm{cm}^{3}\right) \mathrm{Y}_{\mathrm{e}} \mathrm{eV}, \quad \mathrm{Y}_{\mathrm{e}}=\frac{\mathrm{N}_{\mathrm{e}}}{\mathrm{~N}_{\mathrm{p}}+\mathrm{N}_{\mathrm{n}}}
$$

2. In general (even in the case $V \gg \Delta m^{2} / 2 E$) the vacuum oscsill. probability is recovered in the short baseline limit. In matter of constant density:

$$
P_{\operatorname{tr}}=\sin ^{2} 2 \theta_{m} \sin ^{2}(\omega L)=\frac{\sin ^{2} 2 \theta \cdot\left(\frac{\Delta m^{2}}{4 E}\right)^{2}}{\omega^{2}} \sin ^{2}(\omega L), \quad \omega \equiv \frac{1}{2}\left|\mathcal{E}_{2}-\mathcal{E}_{1}\right| .
$$

For $\omega L \ll 1$:

$$
P_{\mathrm{tr}} \simeq \sin ^{2} 2 \theta \cdot\left(\frac{\Delta m^{2}}{4 E} L\right)^{2}=P_{\mathrm{tr}}^{v a c} \text { in short } L \text { limit. }
$$

Problem (*): Does this hold also for $N_{e} \neq$ const.?

Analogy: Spin precession in a magnetic field

$$
\begin{gathered}
\frac{d \vec{S}}{d t}=2(\vec{B} \times \vec{S}) \\
\vec{S}=\left\{\operatorname{Re}\left(\nu_{e}^{*} \nu_{\mu}\right), \operatorname{Im}\left(\nu_{e}^{*} \nu_{\mu}\right), \nu_{e}^{*} \nu_{e}-1 / 2\right\} \\
\vec{B}=\left\{\left(\Delta m^{2} / 4 E\right) \sin 2 \theta, \quad 0, \quad V / 2-\left(\Delta m^{2} / 4 E\right) \cos 2 \theta\right\}
\end{gathered}
$$

MSW effect and solar neutrinos

The survival probability for solar ν_{e} :

MSW effect and solar neutrinos

The survival probability for solar ν_{e} :

Day-night effect: the probability of finding a solar ν_{e} after it traverses the Earth

$$
P_{S E}=\bar{P}_{S}+\frac{1-2 \bar{P}_{S}}{\cos 2 \theta_{0}}\left(P_{2 e}-\sin ^{2} \theta_{0}\right) .
$$

Here: $P_{2 e}=P\left(\nu_{2} \rightarrow \nu_{e}\right)$ - probability of oscillations of the second mass eigenstate into electron neutrino inside the Earth.

General properties of $P_{\alpha \beta}$ and CP, T and CPT

General properties of $P_{\alpha \beta}$

3 flavours $\Rightarrow 3 \times 3=9$ probabilities

$$
P_{\alpha \beta}=P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right),
$$

plus 9 probabilities for antineutrinos $P_{\bar{\alpha} \bar{\beta}}$.
Unitarity conditions (probability conservation):

$$
\sum_{\beta} P_{\alpha \beta}=\sum_{\alpha} P_{\alpha \beta}=1 \quad(\alpha, \beta=e, \mu, \tau)
$$

5 indep. conditions $\Rightarrow 9-5=4$ indep. probabilities left.
Additional symmetry: the matrix of matter-induced potentials $\operatorname{diag}(V(t), 0,0)$ commutes with $O_{23} \Rightarrow$ additional relations between probabilities.

Dependence on θ_{23} and \# of indep. $P_{\alpha \beta}$

Define

$$
\tilde{P}_{\alpha \beta}=P_{\alpha \beta}\left(s_{23}^{2} \leftrightarrow c_{23}^{2}, \sin 2 \theta_{23} \rightarrow-\sin 2 \theta_{23}\right)
$$

(e.g., $\theta_{23} \rightarrow \theta_{23}+\pi / 2$). Then

$$
P_{e \tau}=\tilde{P}_{e \mu} \quad P_{\tau \mu}=\tilde{P}_{\mu \tau} \quad P_{\tau \tau}=\tilde{P}_{\mu \mu}
$$

2 out of 3 conditions are independent $\Rightarrow 4-2=2$ indep. probabilities (e.g., $P_{e \mu}$ and $P_{\mu \tau}$) \Rightarrow
\diamond All 9 neutrino ocillation probabilities can be expressed through just two!

$$
P_{\bar{\alpha} \bar{\beta}}=P_{\alpha \beta}\left(\delta_{\mathrm{CP}} \rightarrow-\delta_{\mathrm{CP}}, V \rightarrow-V\right)
$$

\Rightarrow All 18ν and $\bar{\nu}$ probab. can be expressed through just two

- CP: $\nu_{\alpha, \beta} \leftrightarrow \bar{\nu}_{\alpha, \beta} \quad \Rightarrow \quad U_{\alpha i} \rightarrow U_{\alpha i}^{*} \quad\left(\left\{\delta_{\mathrm{CP}}\right\} \rightarrow-\left\{\delta_{\mathrm{CP}}\right\}\right)$

$$
V(r) \rightarrow-V(r)
$$

- T: $\quad t \rightleftarrows t_{0} \quad \Leftrightarrow \quad \nu_{\alpha} \leftrightarrow \nu_{\beta}$

$$
\begin{gathered}
\Rightarrow \quad U_{\alpha i} \rightarrow U_{\alpha i}^{*} \quad\left(\left\{\delta_{\mathrm{CP}}\right\} \rightarrow-\left\{\delta_{\mathrm{CP}}\right\}\right) \\
V(r) \rightarrow \tilde{V}(r) \\
\tilde{V}(r)=\sqrt{2} G_{F} \tilde{N}(r)
\end{gathered}
$$

$\tilde{N}(r)$: corresponds to interchanged positions of ν source and detector. Symmetric density profiles: $\tilde{N}(r)=N(r)$
\diamond The very presence of matter [with (\# of particles) \neq (\# of antiparticles)] violates C, CP and CPT!
\Rightarrow Fake (extrinsic) $\triangle P$ which may complicate the study of fundamental (intrinsic) $\varnothing P$

$C P$ in matter

- Exists even in $2 f$ case (in $\geq 3 f$ case exists even when all $\left\{\delta_{\mathrm{CP}}\right\}=0$) due to matter effects:

$$
P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right) \neq P\left(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}\right)
$$

E.g., MSW effect can enhance $\nu_{e} \leftrightarrow \nu_{\mu}$ and suppress $\bar{\nu}_{e} \leftrightarrow \bar{\nu}_{\mu}$ or vice versa.

- Survival probabilities are not CP-invariant:

$$
P\left(\nu_{\alpha} \rightarrow \nu_{\alpha}\right) \neq P\left(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\alpha}\right)
$$

To disentangle fundamental $\quad 6 P$ from the matter induced one in LBL experiments - need to measure energy dependence of oscillated signal or signal at two baselines
Alternatives:

- Low- E experiments ($E \sim 0.1-1 \mathrm{GeV}$) with $L \sim 100-1000 \mathrm{~km}$
- Indirect measurements: CP-even terms $\sim \cos \delta_{\mathrm{CP}}$ or area of leptonic unitarity triangle

T in matter

CPT not conserved in matter $\Rightarrow \varnothing P$ and \mathscr{X}^{\prime} are not directly related!

- Matter does not necessarily induce \mathscr{X}^{\prime} (only asymmetric matter with $\tilde{N}(r) \neq N(r)$ does)
- There is no \mathscr{X}^{\prime} (either fundamental or matter induced) in $2 f$ case - a consequence of unitarity:

$$
\begin{gathered}
P_{e e}+P_{e \mu}=1 \\
P_{e e}+P_{\mu e}=1 \\
\Downarrow \\
P_{e \mu}=P_{\mu e}
\end{gathered}
$$

- In 3f case - only one T-odd probability difference for ν 's (and one for $\bar{\nu}$'s) irrespective of matter density profile - a consequence of unitarity in $3 f$ case

$$
\Delta P_{e \mu}^{T}=\Delta P_{\mu \tau}^{T}=\Delta P_{\tau e}^{T}
$$

Matter-induced Y^{\prime} :
\diamond An interesting, pure $3 f$ matter effect; absent in the case of symmetric density profiles (e.g., $N(r)=$ const)
\diamond Does not vanish in the regime of complete averaging
\diamond May fake fundamental \mathscr{X}^{\prime} and complicate its study (extraction of δ_{CP} from the experiment)
\diamond Vanishes when either $U_{e 3}=0$ or $\Delta m_{21}^{2}=0$ (2f limits) \Rightarrow doubly suppressed by both these small parameters
$\Rightarrow \quad$ Perturbation theory can be used to get analytic expressions

"CPT in matter"

Is there a relation between $\triangle P$ and $\not X^{\prime}$ in matter?
For symmetric density profiles (i.e. $\tilde{V}(r)=V(r)$)

$$
P\left(\nu_{\alpha} \rightarrow \nu_{\beta} ; \delta_{\mathrm{CP}}, V(r)\right)=P\left(\bar{\nu}_{\beta} \rightarrow \bar{\nu}_{\alpha} ; \delta_{\mathrm{CP}},-V(r)\right)
$$

(Minakata, Nunokawa \& Parke, 2002)
Easy to generalize to the case of an arbitrary density profile:

$$
P\left(\nu_{\alpha} \rightarrow \nu_{\beta} ; \delta_{\mathrm{CP}}, V(r)\right)=P\left(\bar{\nu}_{\beta} \rightarrow \bar{\nu}_{\alpha} ; \delta_{\mathrm{CP}},-\tilde{V}(r)\right)
$$

Unlike CPT in vacuum, does not directly relate observables
Can be useful for cross-checking theoreticl calculations

Summary - 3f effects in ν oscillations

\diamond Two types of 3f effects - "trivial" (existence of new channels, their inter-dependence through unitarity) and nontrivial (interference of different parameter channels, qualitatively new effects - fundamental CP and T-violation, and matter - induced T violation
\diamond 3f corrections to probabilities of oscillations of solar, atmospheric, reactor and acceler. neutrinos depend on $\left|U_{e 3}\right|=\left|\sin \theta_{13}\right| ;$ can reach $\sim(5-10) \%$
\diamond Possible interesting 3f effects for SN neutrinos - depend significantly on the value $U_{e 3}$ (known now to be not too small)

Summary - contd.

\diamond Manifestations of ≥ 3 flavours in neutrino oscillations:

- Fundamental $G P$ and T
- Matter-induced $\not \subset$
- Matter effects in $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillations
- Specific CP and T conserving interference terms in oscillation probabilities
$\diamond U_{e 3}$ plays a very special role

Direct neutrino mass measurements

Electron spectrum in β decay

E. Fermi, Z. Phys. 1934

Electron spectrum in allowed β decays:
$N_{e}\left(E_{e}\right) d E_{e} \propto F\left(Z, E_{e}\right) \sqrt{E_{e}^{2}-m_{e}^{2}} E_{e}\left(E_{0}-E_{e}\right)^{2} d E_{e}, \quad\left(m_{\nu}=0\right) ;$
$N_{e}\left(E_{e}\right) d E_{e} \propto F\left(Z, E_{e}\right) \sqrt{E_{e}^{2}-m_{e}^{2}} E_{e}\left(E_{0}-E_{e}\right) \sqrt{\left(E_{0}-E_{e}\right)^{2}-m_{\nu}^{2}} d E_{e}, \quad\left(m_{\nu} \neq 0\right)$
For n mixed neutrinos:

$$
m_{\nu}^{2} \rightarrow m_{\beta}^{2} \equiv \sum_{i=1}^{n}\left|U_{e i}\right|^{2} m_{i}^{2}
$$

Troitsk \& Mainz expts. ($\left.{ }^{3} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}+e^{-}+\bar{\nu}_{e}\right): m_{\beta}^{2}<(2.2 \mathrm{eV})^{2} \quad$ (95\% C.L.) KATRIN (expected sensitivity): $m_{\beta}<0.2 \mathrm{eV} \quad(90 \%$ C.L.).
Discovery potential: $m_{\beta}=0.35 \mathrm{eV} \quad(5 \sigma)$.

Beta decay of ${ }^{3} \mathrm{H}$

Precision on the neutrino mass determination relies on \checkmark Precise modelling of the atomic and molecular final state
\checkmark Background reductions

Only a small fraction of events in the last eV below the endpoint: 2 * 10^{-13}

Triutium is present as bi-atomic molecules

High resolution β-spectroscopy: MAC-E-Filter

Magnetic Adiabatic Collimation and Electrostatic Filter:

Magnetic guiding and collimation of e^{-}
$>$ Transform E_{\perp} to $E_{\|}$

$$
\mu=\frac{E_{\perp}}{B}=\text { const. }
$$

Electrostatic field for energy analysis
$>$ Sharp transmission depending on:
> Emission angle
$>$ Radius at $B_{\text {min }}$
Integrated energy resolution:

$$
\Delta E=q U_{\max } \frac{B_{\min }}{B_{\max }}
$$

e.g. A. Picard et al., NIM-B63(1992) 345-358

KATRIN experiment in Karlsruhe

main spectrometer: transport

Universität Karlsruhe (TH)
Forschungsuniversitat • segrindet \square Forschungszentrum Karlsruhe VoronovosiMarab-3rementehatt p

Forsehungazentrum Karlaruhe In anr Hrimhaits Giemnireshnft

Lniversitat Karlsuhe STH

KATRIN's 1st
 Measurement!

Squared neutrino mass values obtained from tritium β-decay in the period 1990-2019

Different technologies

Magnetic calorimeters
e^{-}capture (${ }^{163} \mathrm{Ho}-\mathrm{ECHo}$, HOLMES, NuMECS...)

Electron synchrotron radiation (Project 8)

Novel Technique: CRES

Cyclotron Radiation Emission Spectroscopy

- Enclosed volume
- Fill with tritium gas
- Add a magnetic field

- Decay electrons spiral around field lines
- Add antennas to detect the cyclotron radiation

The angle between the electron momentum and the magnetic field

\rightarrow Correction term for the cyclotron frequency

$$
\omega_{\gamma}=\frac{\omega_{0}}{\gamma}=\frac{e B}{K+m_{e}}\left(1+\frac{\cot ^{2} \theta}{2}\right)
$$

Power emitted

$$
P_{\mathrm{tot}}=\frac{1}{4 \pi \epsilon_{0}} \frac{2 q^{2} \omega_{c}^{2}}{3 c} \frac{\beta^{2} \sin ^{2} \theta}{1-\beta^{2}}
$$

Project 8 Experiment

A phased tritium beta endpoint experiment to measure the electron neutrino mass
> Phase I(Complete)

- First demonstration of CRES technique with ${ }^{83 m} \mathrm{Kr}$
> Phase II (2015-2018)
Phase I
- First tritium measurement with CRES
- Endpoint determination to $\sim 30 \mathrm{eV}$
- see also Mathieu Guigue, Thurs. parallel
> Phase III (2016-2022)
- CRES demonstration in $200 \mathrm{~cm}^{3}$ free space volume
- Neutrino mass sensitivity of $\sim 2 \mathrm{eV}$
> Phase IV (2017+)
- Atomic tritium endpoint measurement with $\mathrm{m}_{v} \sim 40 \mathrm{meV}$ projected sensitivity

Cosmological constraints

Cosmology: constraints on $\sum m_{\nu}$. Strongly depend on what is taken into account.

- Typically range from $\sum m_{\nu}<0.32 \mathrm{eV}$ (Planck, ...) down to $\sum m_{\nu}<0.12 \mathrm{eV}$ (Planck + Lyman α) (95\% C.L.).
- In a foreseeable future may start probing hierarchical neutrino masses.
- eV - range sterile neutrinos ruled out (if thermalized).
- keV - scale sterile neutrino (warm dark matter) allowed

2β decay

Decay modes for Double Beta Decay

Double Beta Decay is a very rare, second-order weak nuclear transition which is possible for a few tens of even-even nuclides

Two decay modes are usually discussed:

$$
\begin{equation*}
(A, Z) \rightarrow(A, Z+2)+2 e^{-}+2 \bar{v}_{\mathrm{e}} \tag{1}
\end{equation*}
$$

2v Double Beta Decay allowed by the Standard Model already observed $-\tau \geq 10^{19} y$

$$
\begin{equation*}
(A, Z) \rightarrow(A, Z+2)+2 e^{-} \tag{2}
\end{equation*}
$$ never observed (except a discussed claim) $\tau>10^{25} y$

Process (2) would imply new physics beyond the Standard Model
violation of lepton number conservation

Observation of Ov -DBL

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{v}} \neq 0 \\
& \mathrm{v} \equiv \mathrm{v}
\end{aligned}
$$

2β decay

Is possible for $A(Z, N)$ when the decay into the "neighbouring" nucleus $A(Z \pm 1, N \mp 1)$ is energetically forbidden, but decay into the next nucleus $A(Z \pm 2, N \mp 2)$ is allowed. ${ }^{82} \mathrm{Se},{ }^{76} \mathrm{Ge},{ }^{100} \mathrm{Mo},{ }^{130} \mathrm{Te},{ }^{96} \mathrm{Zr},{ }^{48} \mathrm{Ca},{ }^{136} \mathrm{Xe}, \ldots$

Extremely rare decays $\left(\Gamma \propto G_{F}^{4}\right), T_{1 / 2}(2 \beta 2 \nu)>10^{19} \mathrm{yr}$.
Usually $2 \beta^{-}$decays (only few canidates for $2 \beta^{+}$decays known, expected $T_{1 / 2}$ very large due to small Q values).

Neutrinoless 2β decay $-\Delta L=2$ process; would be an unambiguous evidence for Majorana nature of neutrino!
$2 \beta 0 \nu$ decay not yet experimentally established (only lower bounds on $T_{1 / 2}(2 \beta 0 \nu)$ exist). Only one (controversial) claim by part of Heidelberg-Moscow collavoration (Kalpdor-Kleingrothaus et al.). - contradicts data of GERDA expt.

Main uncertainty in the interpretation of the results related to inaccuracy in the theoretciacal calculations of the nuclear matrix elements.

Mechanisms of $2 \beta 0 \nu$ decay

The standard mechanism with a light Majorana neutrino:

$$
\mathcal{A}_{2 \beta 0 \nu} \propto \sum_{i} m_{i} U_{e i}^{2} \equiv m_{\beta \beta}
$$

In the basis where m_{l} is diagonalized $m_{\beta \beta}$ is the ee entry of $m_{\nu}: m_{\beta \beta}=m_{e e}$
Depends on Majorana-type $\varnothing P$ phases! In the $3 f$ case:

$$
m_{\beta \beta}=c_{13}^{2} c_{12}^{2} m_{1}+c_{13}^{2} s_{12}^{2} e^{2 i \sigma_{1}} m_{2}+s_{13}^{2} e^{2 i\left(\sigma_{2}-\delta_{C P}\right)} m_{3}
$$

In the case of NH , cancellation possible!

Other mechanisms in extensions of the SM

Contributions of W_{R}, N_{R}, triplet Higgses, SUSY particles, leptoquarks, \ldots

Independently of the $2 \beta 0 \nu$ decay mechanism, neutrino gets Majorana mass term $\Rightarrow \nu$'s are Majorana particles! The black box argument:

(Schechter \& Valle, 1982)

$0 v \beta \beta$ by RHC, Heavy v, SUSY, and others

$\mathbf{A}^{2 v}=\mathbf{G M}^{2 v} \quad \mathbf{A}^{\mathrm{M}}=<\mathrm{g}_{\mathrm{M}}>\mathbf{M}$
Energy spectra 4,3,2 body

$$
\begin{aligned}
& \mathbf{A}^{0 v}=\underset{\sim}{\text { LHC }}>+ \text { SUSY }
\end{aligned}+\underset{<\lambda>\sim \mathbf{k}\left(\mathbf{M}_{\mathrm{L}} / \mathbf{M}_{\mathrm{R}}\right)^{2}}{\text { RHC }}
$$

LHC / RHC

Θ_{21} and \mathbf{E}_{12} correlations

LHC m_{v} / SUSY

$\mathbf{m}_{\mathrm{v}} \mathbf{M}^{0 \mathrm{v}}+\mathbf{k} \mathbf{M}^{\mathrm{s}}$
different isotopes and states with different M

$m_{\beta \beta}$ as a function of $m_{\text {lightest }}$

Blue - normal mass ordering, yellow - inverted mass ordering

NME status

Experiments

Collaboration	Isotope	Technique	mass ($0 v \beta \beta$ isotope $)$	Status
CANDLES	${ }^{48} \mathrm{Ca}$	305 kg CaF 2 crystals - liq. scint	0.3 kg	Operating
CARVEL	${ }^{48} \mathrm{Ca}$	${ }^{48} \mathrm{CaWO}_{4}$ crystal scint.	16 kg	R\&D
GERDA I	${ }^{76} \mathrm{Ge}$	Ge diodes in LAr	15 kg	Complete
GERDA II	${ }^{76} \mathrm{Ge}$	Point contact Ge in active LAr	44 kg	Operating
Majorana Demonstrator	${ }^{76} \mathrm{Ge}$	Point contact Ge in Lead	30 kg	Operating
LEGEND 200	${ }^{76} \mathrm{Ge}$	Point contact Ge in active LAr	200 kg	Construction
LEGEND 1000	${ }^{76} \mathrm{Ge}$	Point contact Ge in active LAr	1 tonne	R\&D
NEMO3	${ }^{100} \mathrm{Mo} /{ }^{82} \mathrm{Se}$	Foils with tracking	$6.9 \mathrm{~kg} / 0.9 \mathrm{~kg}$	Complete
SuperNEMO Demonstrator	${ }^{82} \mathrm{Se}$	Foils with tracking	7 kg	Construction
SELENA	${ }^{82} \mathrm{Se}$	Se CCDs	$<1 \mathrm{~kg}$	R\&D
NvDEx	${ }^{82} \mathrm{Se}$	SeF6 high pressure gas TPC	50 kg	R\&D
AMoRE	${ }^{100} \mathrm{Mo}$	CaMoO4 bolometers (+ scint.)	5 kg	Construction
CUPID	${ }^{100} \mathrm{Mo}$	Scintillating Bolometers	250 kg	R\&D
COBRA	${ }^{116} \mathrm{Cd} / 130 \mathrm{Te}$	CdZnTe detectors	10 kg	Operating
CUORE-0	${ }^{130} \mathrm{Te}$	TeO_{2} Bolometer	11 kg	Complete
CUORE	${ }^{130} \mathrm{Te}$	TeO_{2} Bolometer	206 kg	Operating
SNO+	${ }^{130} \mathrm{Te}$	0.3% natTe in liquid scint.	800 kg	Construction
SNO+ Phase II	${ }^{130} \mathrm{Te}$	$3 \%{ }^{\text {nat }} \mathrm{Te}$ in liquid scint.	8 tonnes	R\&D
KamLAND-Zen 400	${ }^{136} \mathrm{Xe}$	2.7\% in liquid scint.	370 kg	Complete
KamLAND-Zen 800	${ }^{136} \mathrm{Xe}$	2.7\% in liquid scint.	750 kg	Operating
KamLAND2-ZEN	${ }^{136} \mathrm{Xe}$	2.7\% in liquid scint.	\sim tonne	R\&D
EXO-200	${ }^{136} \mathrm{Xe}$	Xe liquid TPC	160 kg	Complete
nEXO	${ }^{136} \mathrm{Xe}$	Xe liquid TPC	5 tonnes	R\&D
NEXT-WHITE	${ }^{136} \mathrm{Xe}$	High pressure GXe TPC	$\sim 5 \mathrm{~kg}$	Operating
NEXT-100	${ }^{136} \mathrm{Xe}$	High pressure GXe TPC	100 kg	Construction
PandaX	${ }^{136} \mathrm{Xe}$	High pressure GXe TPC	\sim tonne	R\&D
DARWIN	${ }^{136} \mathrm{Xe}$	Xe liquid TPC	3.5 tonnes	R\&D
AXEL	${ }^{136} \mathrm{Xe}$	High pressure GXe TPC	\sim tonne	R\&D
DCBA	${ }^{150} \mathrm{Nd}$	Nd foils \& tracking chambers	30 kg	R\&D
R\&D		Operating	Complete	

Present experiments ($m_{\beta \beta}$)

Presently best available published limits for each isotope

Status: near future

Backup slides

Do we need 2β-decay experiments?

Neutrinos are Majorana particles - proven logically :-)

The proof:

(Boris Kayser, 2019)

1. There are three phrases on this slide
2. Exactly two of them are wrong
3. Neutrinos are Majorana particles

MSW effect and solar neutrinos

The survival probability for solar ν_{e} :

MSW effect and solar neutrinos

The survival probability for solar ν_{e} :

Day-night effect: the probability of finding a solar ν_{e} after it traverses the Earth

$$
P_{S E}=\bar{P}_{S}+\frac{1-2 \bar{P}_{S}}{\cos 2 \theta_{0}}\left(P_{2 e}-\sin ^{2} \theta_{0}\right) .
$$

Here: $P_{2 e}=P\left(\nu_{2} \rightarrow \nu_{e}\right)$ - probability of oscillations of the second mass eigenstate into electron neutrino inside the Earth.

How is it obtained?

Neutrino state at the surface of the Sun:

$$
\left|\nu_{\odot}\right\rangle=a_{1}\left|\nu_{1}\right\rangle+a_{2} e^{i \phi_{S}}\left|\nu_{2}\right\rangle \quad\left(a_{1,2}-\text { real }\right)
$$

Averaged ν_{e} survival probability in the Sun:

$$
\begin{gathered}
\bar{P}_{S}=\overline{\left|\left\langle\nu_{e} \mid \nu_{\odot}\right\rangle\right|^{2}}=a_{1}^{2} \cos ^{2} \theta+a_{2}^{2} \sin ^{2} \theta \Rightarrow \\
a_{2}^{2}=1-a_{1}^{2}=\frac{\cos ^{2} \theta-\bar{P}_{S}}{\cos 2 \theta}
\end{gathered}
$$

Solar neutrinos arrive at the Earth as an incoherent sum of ν_{1} and $\nu_{2} \Rightarrow$

$$
P_{S E}=a_{1}^{2} P_{1 e}+a_{2}^{2} P_{2 e}=a_{1}^{2}\left(1-P_{2 e}\right)+a_{2}^{2} P_{2 e}=\bar{P}_{S}+\frac{1-2 \bar{P}_{S}}{\cos 2 \theta}\left(P_{2 e}-\sin ^{2} \theta\right) .
$$

In vacuum $P_{2 e}=\sin ^{2} \theta \Rightarrow P_{S E}=\bar{P}_{S}$.

How is it obtained?

For matter of constant density:

$$
\diamond \quad P_{2 e}-\sin ^{2} \theta=\frac{V \delta}{4 \omega^{2}} \sin ^{2} 2 \theta \sin ^{2}(\omega L)
$$

Here:

$$
\delta \equiv \frac{\Delta m_{21}^{2}}{2 E}, \quad \theta=\theta_{12} . \quad \omega=\sqrt{(\cos 2 \theta \cdot \delta-V)^{2}+\delta^{2} \sin ^{2} 2 \theta^{2}}
$$

Pre-sine ${ }^{2}$ factor in $P_{2 e}-\sin ^{2} \theta$ reaches its max. at $V=\delta$ (not at $V=\delta \cdot \cos 2 \theta$ which would correspond to the MSW resonance!)

$$
\left(P_{2 e}-\sin ^{2} \theta\right)_{\text {max. ampl. }}=\cos ^{2} \theta \sin ^{2}(\sin \theta \cdot \delta \cdot L)
$$

In the (realistic) case $V \ll \delta$:

$$
\diamond \quad P_{2 e}-\sin ^{2} \theta=\frac{V}{\delta} \sin ^{2} 2 \theta \sin ^{2}\left(\frac{1}{2} \delta \cdot L\right)
$$

$3 f$ oscillations in matter

3f neutrino oscillations in matter

Evolution equation:

$$
\begin{gathered}
i \frac{d}{d t}\left(\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=\left[U\left(\begin{array}{ccc}
E_{1} & 0 & 0 \\
0 & E_{2} & 0 \\
0 & 0 & E_{3}
\end{array}\right) U^{\dagger}+\left(\begin{array}{ccc}
V(t) & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right]\left(\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right) \\
E_{i}=\sqrt{p^{2}+m_{i}^{2}} \simeq p+\frac{m_{i}^{2}}{2 p} ; \quad t \simeq r \\
V(t)=\left[V\left(\nu_{e}\right)\right]_{C C}=\sqrt{2} G_{F} N_{e}(t)
\end{gathered}
$$

$\left[V\left(\nu_{e}\right)\right]_{N C}=\left[V\left(\nu_{\mu}\right)\right]_{N C}=\left[V\left(\nu_{\tau}\right)\right]_{N C}$ - do not contribute
(Modulo tiny radiative corrections)

Evolution in the rotated basis

Evolution matrix $S\left(t, t_{0}\right)$: $\quad \nu(t)=S\left(t, t_{0}\right) \nu\left(t_{0}\right)$. Satisfies

$$
\begin{aligned}
& \diamond \quad i \frac{d}{d t} S\left(t, t_{0}\right)=H_{\mathrm{fl}} S\left(t, t_{0}\right) \quad \text { with } S\left(t_{0}, t_{0}\right)=\mathbb{1} . \\
& H_{\mathrm{fl}}=\left(O_{23} \Gamma_{\delta} O_{13} \Gamma_{\delta}^{\dagger} O_{12}\right) \operatorname{diag}(0, \delta, \Delta)\left(O_{12}^{T} \Gamma_{\delta} O_{13}^{T} \Gamma_{\delta}^{\dagger} O_{23}^{T}\right)+\operatorname{diag}(V(t), 0,0) \\
& \quad=\left(O_{23} \Gamma_{\delta} O_{13} O_{12}\right) \operatorname{diag}(0, \delta, \Delta)\left(O_{12}^{T} O_{13}^{T} \Gamma_{\delta}^{\dagger} O_{23}^{T}\right)+\operatorname{diag}(V(t), 0,0)
\end{aligned}
$$

where

$$
\delta \equiv \frac{\Delta m_{21}^{2}}{2 E}, \quad \Delta \equiv \frac{\Delta m_{31}^{2}}{2 E}
$$

Oscillation probabilities:

$$
P_{\alpha \beta}=\left|S_{\beta \alpha}\right|^{2}
$$

Define

$$
O_{23}^{\prime}=O_{23} \Gamma_{\delta}
$$

The matrix $\operatorname{diag}(V(t), 0,0)$ commutes with $O_{23}^{\prime} \Rightarrow$ go to the rotated basis

Evolution in the rotated basis - contd.

$$
\nu=O_{23}^{\prime} \nu^{\prime}, \quad \text { or } \quad S\left(t, t_{0}\right)=O_{23}^{\prime} S^{\prime}\left(t, t_{0}\right) O_{23}^{\prime \dagger}
$$

In the rotated basis $H^{\prime}=O_{23}^{\prime} H_{\mathrm{fl}} O_{23}^{\prime}{ }^{\dagger}$. Explicitly:

$$
H^{\prime}(t)=\left(\begin{array}{ccc}
s_{12}^{2} c_{13}^{2} \delta+s_{13}^{2} \Delta+V(t) & s_{12} c_{12} c_{13} \delta & s_{13} c_{13}\left(\Delta-s_{12}^{2} \delta\right) \\
s_{12} c_{12} c_{13} \delta & c_{12}^{2} \delta & -s_{12} c_{12} s_{13} \delta \\
s_{13} c_{13}\left(\Delta-s_{12}^{2} \delta\right) & -s_{12} c_{12} s_{13} \delta & c_{13}^{2} \Delta+s_{12}^{2} s_{13}^{2} \delta
\end{array}\right)
$$

Dependence on θ_{23} and δ_{CP} can be obtained in the general case by rotating back to the original flavour basis. Also: easy to apply PT approximations

- If $\frac{\Delta m_{21}^{2}}{2 E} L \ll 1-$ neglect $\delta=\frac{\Delta m_{21}^{2}}{2 E}$
- As θ_{13} is relatively small - neglect s_{13}
or use expansion in these small parameters

General dependence on δ_{CP}

Another use of essentially the same symmetry: rotate by

$$
O_{23}^{\prime}=O_{23} \times \operatorname{diag}\left(1,1, e^{i \delta_{\mathrm{CP}}}\right)
$$

From commutativity of $\operatorname{diag}(V(t), 0,0)$ with $O_{23}^{\prime} \Rightarrow$ General dependence of probabilities on δ_{CP} :

$$
\begin{aligned}
P_{e \mu} & =A_{e \mu} \cos \delta_{\mathrm{CP}}+B_{e \mu} \sin \delta_{\mathrm{CP}}+C_{e \mu} \\
P_{\mu \tau} & =A_{\mu \tau} \cos \delta_{\mathrm{CP}}+B_{\mu \tau} \sin \delta_{\mathrm{CP}}+C_{\mu \tau} \\
& +D_{\mu \tau} \cos 2 \delta_{\mathrm{CP}}+E_{\mu \tau} \sin 2 \delta_{\mathrm{CP}}
\end{aligned}
$$

General structure of T-odd probability diff.

$$
\Delta P_{e \mu}^{T}=\underbrace{\sin \delta_{\mathrm{CP}} \cdot Y}_{\text {fundam. } \not{\not{T}}}+\underbrace{\cos \delta_{\mathrm{CP}} \cdot X}_{\text {matter-ind. } \mathscr{X}^{\prime}}
$$

In adiabatic approximation: $X=J_{\text {eff }} \cdot($ oscillating terms),

$$
\diamond J_{\mathrm{eff}}=s_{12} c_{12} s_{13} c_{13}^{2} s_{23} c_{23} \frac{\sin \left(2 \theta_{1}-2 \theta_{2}\right)}{\sin 2 \theta_{12}}
$$

Compare with the vacuum Jarlskog invariant:

$$
\begin{gathered}
J=s_{12} c_{12} s_{13} c_{13}^{2} s_{23} c_{23} \sin \delta_{\mathrm{CP}} \\
\Rightarrow \quad \\
\sin \delta_{\mathrm{CP}} \Leftrightarrow \frac{\sin \left(2 \theta_{1}-2 \theta_{2}\right)}{\sin 2 \theta_{12}}
\end{gathered}
$$

Matter-induced T :

\diamond Negligible effects in terrestrial experiments
\diamond Cannot be observed in supernova ν oscillations due to experimental indistinguishability of low-energy ν_{μ} and ν_{τ}
\diamond Can affect the signal from $\sim \mathrm{GeV}$ neutrinos produced in annihilations of WIMPs inside the Sun

Backup

Another possible matter effect

Parametric resonance in neutrino oscillations

Parametric resonance in oscillating systems with varying parameters: occurs when the rate of the parameter change is correlated in a certain way with the values of the parameters themselves

Parametric resonance in neutrino oscillations

Parametric resonance in oscillating systems with varying parameters: occurs when the rate of the parameter change is correlated in a certain way with the values of the parameters themselves

Parametric resonance in neutrino oscillations

Parametric resonance in oscillating systems with varying parameters: occurs when the rate of the parameter change is correlated in a certain way with the values of the parameters themselves

Parametric resonance in neutrino oscillations

Parametric resonance in oscillating systems with varying parameters: occurs when the rate of the parameter change is correlated in a certain way with the values of the parameters themselves

For small-ampl. osc.:
$\Omega_{\mathrm{res}}=\frac{2 \omega}{n}$

$$
n=1,2,3 \ldots
$$

Different from MSW eff. - no level crossing !

An example admitting an exact analytic solution - "castle wall" density profile (E.A., 1987, 1998):

Resonance condition:

$$
X_{3} \equiv-\left(\sin \phi_{1} \cos \phi_{2} \cos 2 \theta_{1 m}+\cos \phi_{1} \sin \phi_{2} \cos 2 \theta_{2 m}\right)=0
$$

$\phi_{1,2}$ - oscillation phases acquired in layers 1,2

Earth's density profile (PREM model) :

Earth's density profile (PREM model) :

Param. res. condition: $\left(l_{\text {osc }}\right)_{\text {matt }} \simeq l_{\text {density mod. }}$.

Fulfilled for $\nu_{e} \leftrightarrow \nu_{\mu, \tau}$ oscillations of core-crossing ν 's in the Earth for a wide range of energies and zenith angles !

Intermed. energies
$\cos \Theta=-0.89 \quad \sin ^{2} 2 \theta_{13}=0.01$
(Liu, Smirnov, 1998; Petcov, 1998; E.A. 1998)

High energies, $\cos \Theta$ dependence
(E.A., Maltoni \& Smirnov, 2005)

Parametric resonance of ν oscillations in the Earth:
can be observed in future atmospheric or accelerator experiments if θ_{13} is not much below its current upper limit

Parametric enhancement in the Earth

Neutrino oscillations in the Earth

A coherent description in terms of different realizations of just 2 conditions - amplitude and phase conditions

Matter with $N_{e}=$ const:

$$
\diamond \quad P_{\mathrm{tr}}=\sin ^{2} 2 \theta_{m} \sin ^{2} \phi_{m}
$$

- amplitude condition $=$ MSW resonance condition $\left(\theta_{m}=45^{\circ}\right)$
- phase condition: $\phi_{m}=\pi / 2+\pi n$

Neutrino oscillations in the Earth

"Castle wall" density profile:

$$
\diamond \quad P_{\mathrm{tr}}^{(n)}=\frac{X_{1}^{2}+X_{2}^{2}}{X_{1}^{2}+X_{2}^{2}+X_{3}^{2}} \sin ^{2} n \Phi
$$

Evolution matrix: $\nu(t)=S\left(t, t_{0}\right) \nu(0)$. For 2 layers:
$S^{(2)}\left(t, t_{0}\right)=\left(\begin{array}{cc}Y-i X_{3} & -i\left(X_{1}-i X_{2}\right) \\ -i\left(X_{1}+i X_{2}\right) & Y+i X_{3}\end{array}\right), \quad Y^{2}+\mathrm{X}^{2}=1$

- amplitude condition = parametric resonance condition ($X_{3}=0$)
- phase condition: $\Phi \equiv \arccos Y=\pi / 2+\pi n$

Neutrino oscillograms of the Earth

Contours of equal osc. probabilities in $\left(\Theta_{\nu}, E_{\nu}\right)$ plane
Θ_{13} - dependense of $P_{A} \Rightarrow$
$P_{A}-$ effective $2 f$ transition probability $\left(\Delta m_{\text {sol }}^{2} \rightarrow 0\right)$

$$
\begin{aligned}
& P_{e \mu}=s_{23}^{2} P_{A} \\
& P_{e \tau}=c_{23}^{2} P_{A}
\end{aligned}
$$

(E.A., Maltoni \& Smirnov, 2006)

Including the effects of $\Delta m_{\text {sol }}^{2}:\left(1-P_{e e}\right)$

Including the effects of $\Delta m_{\mathrm{sol}}^{2}:\left(1-P_{e e}\right)$

Producing the oscillograms

Accelerators

Large atmospheric neutrino detectors

A. Smirnov, UCLA seminar

Is T reversal in matter equivalent to $\nu_{a} \leftrightarrow \nu_{b}$?

No explicit closed form solution in general.

> Still, easy to answer!

Treversal: $\quad t \rightleftarrows t_{0} \quad \Leftrightarrow \quad S\left(t, t_{0}\right) \Rightarrow S\left(t_{0}, t\right)$
One has:

$$
S\left(t_{0}, t\right)=S\left(t, t_{0}\right)^{-1}=S\left(t, t_{0}\right)^{\dagger}=\left[S\left(t, t_{0}\right)^{T}\right]^{*}
$$

Therefore

$$
\left|\left[S\left(t_{0}, t\right)\right]_{\alpha \beta}\right|^{2}=\left|\left[S\left(t, t_{0}\right)\right]_{\beta \alpha}\right|^{2}
$$

\Rightarrow In matter with arbitrary density profile, as well as in vacuum, time reversal is equivalent to interchanging the initial and final neutrino flavours

To extract fundamental $\not \subset$ need to measure:

$$
\Delta P_{\alpha \beta} \equiv P_{\mathrm{dir}}\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)-P_{\mathrm{rev}}\left(\nu_{\beta} \rightarrow \nu_{\alpha}\right) \propto \sin \delta_{\mathrm{CP}}
$$

Even survival probabilities $P_{\alpha \alpha}(\alpha=\mu, \tau)$ can be used!

$$
P_{\mathrm{dir}}\left(\nu_{\alpha} \rightarrow \nu_{\alpha}\right)-P_{\mathrm{rev}}\left(\nu_{\alpha} \rightarrow \nu_{\alpha}\right) \sim \sin \delta_{\mathrm{CP}} \quad(\alpha \neq e)
$$

In 3 f case $P_{e e}$ does not depend on $\delta_{\mathrm{CP}}-$ not true if $\nu_{\text {sterile }}$ is present!
Matter-induced \mathscr{X}^{\prime} in LBL experiments due to imperfect sphericity of the Earth density distribution cannot spoil the determination of δ_{CP} if the error in δ_{CP} is $>1 \%$ at 99% C.L.
\Rightarrow No need to interchange positions of ν source and detector!
Experimental study of \mathscr{Y}^{\prime} difficult because of problems with detection of $e^{ \pm}$

Neutrino Oscillations \& $0 \mathrm{v} \beta \beta$

$$
\left\langle m_{e e}\right\rangle=\left|c_{12}^{2} c_{13}^{2} m_{1}+s_{12}^{2} c_{13}^{2} m_{2} e^{2 i \phi_{12}}+s_{13}^{2} m_{3} e^{2 i \phi_{13}}\right|
$$

- Uncertainty from unknown Majorana phase
- Quasi-degenerate region above 0.2 eV
- Accidental cancellation for NO

Lindner, Merle, Rodejohann (2006)

Light Sterile Neutrinos - Interplay 0v $\beta \beta$ \& KATRIN

- possible kink @ KATRIN would imply that IO and NO might not be distinguishable anymore with $0 v \beta \beta$
- Observation of $0 v \beta \beta$ would not necessarily imply IO
- Non-observation would not rule out IO due to cancellations for large enough $\mathrm{m}_{4} \mathrm{U}^{2}{ }_{\mathrm{e} 4}$

Abada, Hernandez-Cabezudo, Marcano (2019)

