Production of double charmed baryons with excited diquark at LHC

Moscow International School of Physics

I. Belov

Moscow State University

21.02.2019

Double heavy baryons

$$\mathbf{Q}\mathbf{Q}'\mathbf{q}-$$
 system:

$$\Xi_{QQ'} = QQ'q, \quad q = (u, d)$$

$$\Omega_{QQ'} = QQ'q, \quad q = s$$

Key features:

- Hierarchy of interaction scales: $m_{Q,Q'}\gg m_{Q,Q'}\cdot v\gg \Lambda_{QCD}$
- In the limit $m_Q \to \infty$ diquark acts as a local heavy source of gluon field
- Sequential interaction:
 - $[QQ']_{\bar{3}_c}$
 - $[QQ']_{\bar{3}_c}^{3_c} + q_{3_c}$

LHCb breakthrough

SEP 2017. Observation of Ξ_{cc}^{++} in decay mode $\Xi_{cc}^{++} \to \Lambda_c K^- \pi^+ \pi^+$

OCT 2018. Observation of the decay $\Xi_{cc}^{++} \to \Xi_c^+ \pi^+$

[R. Aaij et al. (LHCb), Phys. Rev. Lett. 119, 112001 (2017)

R. Aaij et al. 1807.01919 (2018)]

Spectroscopy

In case Q = Q' wave function of a diquark is AS:

• S.D-wave
$$S=1$$

• P-wave
$$S=0$$

Metastable states: $\Xi_{cc}(1P), \ \Xi_{cc}(2P)$

Transitions

$$1P1s \rightarrow 1S1s$$
$$2P1s \rightarrow 1S1s$$

require a simultaneous change of the diquark's spin and angular momentum

Mass spectrum of Ξ_{cc} baryon in GeV. Dashed line shows the $\Lambda_c D$ threshold.

Production of double heavy baryons

Several stages:

- Hard production of two heavy quark pairs
- Soft formation of the diquark in color antitriplet
- Hadronization into baryon

$$\mathbf{Q}\mathbf{\bar{Q}}\mathbf{Q'}\mathbf{\bar{Q'}}\rightarrow~\left[\mathbf{Q}\mathbf{Q'}\right]_{\mathbf{\bar{3}_{c}}}\rightarrow~\mathbf{Q}\mathbf{Q'}\mathbf{q}$$

- DPS mechanism is not involved in production of QQ'
- In very rough approximation

$$P\left(\left[QQ'\right]_{\bar{3}_c} \to QQ'q\right) = 1$$

the probability of diquark dissociation is not accounted, the whole momentum of the diquark is transmitted to the baryon

Hadronic production of $c\bar{c}c\bar{c}$

- gg contribution dominates towards $q\bar{q}$
- gq diagrams may be neglected given that $p_T \sim m_c$
- ullet 36 diagrams of the 4th order by $lpha_s$ in perturbative QCD

FeynArts
 Generation and visualization of feynman diagrams

FeynArts: analytical expressions

[T. Hahn, Comput. Phys. Commun. 140, 418-431 (2001)]

Diquark formation

 Spin selection for S-wave state:

 Spin selection for P-wave state:

Colour factor

$$N(1,1) = |\uparrow\uparrow\rangle$$

 $N(1,-1) = |\downarrow\downarrow\rangle$

$$\mathtt{N}\left(1,0\right) = \frac{1}{\sqrt{2}}\left(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle\right) \qquad \mathtt{N}\left(0,0\right) = \frac{1}{\sqrt{2}}\left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle\right)$$

$$N(0,0) = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$

Convolution with the wave function of the diquark:

$$A^{SJj_z} = \int T_{c\bar{c}c\bar{c}}^{Ss_z}(p_i, k(\vec{q})) \cdot \left(\Psi_{cc}^{Ll_z}(\vec{q})\right)^* \cdot C_{s_z l_z}^{Jj_z} \frac{d\vec{q}}{(2\pi)^3}$$

 $T(p_i, k(\vec{q}))$ — amplitude of the hard production of two $c\bar{c}$ pairs

 $\Psi_{c\bar{c}}(\vec{q})$ — wave function of the diquark

 p_i — four momenta of $[cc]_{\bar{3}_c}$, c_1, c_2

 \vec{q} — three momentum of \vec{c} -quark in the diquark rest frame

 $(0,\vec{q}) o k\left(\vec{q}
ight)$ — boost from the diquark rest frame to the frame of $c\bar{c}c\bar{c}$ production

 $C_{s,l}^{Jj_z}$ — Clebsh-Gordon coefficients

Under assumption of small dependence of $T_{c\bar{c}c\bar{c}}^{Ss_z}$ on $k\left(\vec{q}\right)$:

$$A \sim \int d^3 q \, \Psi(\vec{q}) \left\{ T(p_i, \vec{q}) \Big|_{\vec{q}=0} + \vec{q} \, \frac{\partial}{\partial \vec{q}} T(p_i, \vec{q}) \Big|_{\vec{q}=0} + \cdots \right\}$$

• For S-wave state:

$$A^{s_z} \sim R_s(0) \cdot T^{s_z}_{c\bar{c}c\bar{c}}(p_i) \big|_{\vec{q}=0}$$

• For scalar *P*-wave state:

$$A^{l_z} \sim R'_p(0) \cdot \mathcal{L}^{l_z} T_{c\bar{c}c\bar{c}}(p_i) \big|_{\vec{q}=0}$$

Differential operator:

$$\mathcal{L}^{l_z} = \begin{cases} \mathcal{L}^{-1} = \frac{1}{\sqrt{2}} \left(\frac{\partial}{\partial q_x} + i \frac{\partial}{\partial q_y} \right) \\ \mathcal{L}^0 = \frac{\partial}{\partial q_z} \\ \mathcal{L}^{+1} = -\frac{1}{\sqrt{2}} \left(\frac{\partial}{\partial q_x} - i \frac{\partial}{\partial q_y} \right) \end{cases}$$

[A.V. Berezhnoy, V.V. Kiselev, A.K. Likhoded, Phys. Lett. B 381 (1996) 341–347]

Input parameters:

$$m, M, R_s(0), R'_p(0), \sqrt{s}_{pp}$$

Fortran code:

- Calculation of matrix elements with spin selection
- Differentiation:

$$\frac{\partial T\left(p_{i},k(\vec{q})\right)}{\partial q_{j}}\Big|_{\vec{q}=0} \approx \frac{T\left(p_{i},k(\varepsilon^{j})\right) - T\left(p_{i},0\right)}{\varepsilon}$$

- Integration over phase space within RAMBO generator
- Convolution with proton distribution functions CT14 at varied scale:

$$\sigma_{pp} = \int \hat{\sigma}_{gg} (\hat{s}_{gg}) f_{g1} (x_1) f_{g2} (x_2) dx_1 dx_2$$

[S. Dulat, T.J. Hou, J. Gao et al., EPJ Web Conf. 120, 07003 (2016)]

Results: cross sections

Cross sections for Ξ_{cc} excitations at $\sqrt{s}=13 {\rm TeV}$

state	σ , [nb]
1S	$120 \div 170$
2S	$60 \div 90$
3S	$40 \div 70$
1P	$4 \div 6$
2P	$4 \div 5$

Results: relative yields

Relative yields $r\left(\Xi_{cc}^{*}\right)=\sigma\left(\Xi_{cc}^{*}\right)/\sigma\left(\Xi_{cc}\right) \text{ for } \\ \Xi_{cc} \text{ excitations}$

state	r, %
1S	$49 \div 52$
2S	$26 \div 27$
3S	$18 \div 20$
1P	2
2P	$1 \div 2$

Conclusions

 Relative yields for production of S-wave and P-wave excitations of Ξ_{cc} have been estimated in LHCb' kinematics:

$$\sigma\left(\Xi_{cc}^{P}\right)/\sigma\left(\Xi_{cc}\right) \approx 3\%$$
$$\sigma\left(\Xi_{cc}^{S*}\right)/\sigma\left(\Xi_{cc}\right) \approx 45\%$$

• Nowadays LHCb collaboration observes hundreds of events for Ξ_{cc} ground state. 313 ± 33 particles are identificated in decay:

$$\Xi_{cc}^{++}\to \Lambda_c^+ K^- \pi^+ \pi^+$$

• It is worth expecting that the excited states of Ξ_{cc} will be extracted at Run 3 in single pion transitions:

$$\Xi_{cc}^{P +} \rightarrow \Xi_{cc}^{++} \pi^{-}$$

$$\Xi_{cc}^{S* +} \rightarrow \Xi_{cc}^{++} \pi^{-}$$

Thank you for attention!

The work was supported by foundation for the advancement of theoretical physics "BASIS", grants number 17-12-244-1 and 17-12-244-41.